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Entrance Level Competencies In Mathematics (Levels 1, 2, 3, 4, 5)

Module 1 – Foundations: Number Concepts And Operations

Module 2 – Patterns And Relations

Module 3 – Variables And Equations

Module 4 – Measuring Time, Shapes, And Spaces 

Organization of Topics

The emphasis in trades is on using mathematics to solve practical problems quickly
and correctly. Each topic in this curriculum guide includes:

1. Background and theory

2. Examples with explanations

3. Practice Exam Questions with answers and explanations

This curriculum guide outlines competencies, but does not provide detailed lessons,
as in a textbook or GED Study Guide. If you need more instruction on a particular
competency, you may find these and other textbook resources helpful. If you want
to build up speed as well as accuracy in a competency you will find these
additional resources helpful as a source of additional practice questions. Need to
know information for the trades entrance exam is singled out for your attention by
the use of text boxes and bold type.

Introduction1

1 A detailed introduction with sections on self-assessment and study tips is provided with Math –
Module 1 – Foundations. Please review this material to supplement the brief overview provided here.
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You may want to skip the background given on a topic and go right to the examples
to see how well you do. You can always go back to the theory if you find you need
it. The abbreviation “aka” (also known as) is used in the background sections to
point out different, but equivalent, expressions for the same idea. For example
“perpendicular aka normal” in Unit 2, Topic 1.B – Bisecting Angles and Lines.

In addition, a set of practice exam questions for Module 4 – Measuring Time,
Shapes and Spaces accompanies this learning guide to enable you to assess
yourself, decide what you need to study, and practice for the exam.

Introduction

Examples are the focus

In this curriculum guide, examples with explanations are the primary tool used
for review. Background for each competency is also given with a brief overview
of what you need to know. Before any examples are given, the main ideas in
each topic are explained and “need to know” information is summarized in
rules and definitions.

Please Note: 

When you work on an example, cover the text below with the laminated card
provided so that you don’t see answers and explanations prematurely.

6 Math – Module 4 – Measuring Time, Shapes and Spaces

You may want to skip the background given on a topic and go right to the examples
to see how well you do. You can always go back to the theory if you find you need
it. The abbreviation “aka” (also known as) is used in the background sections to
point out different, but equivalent, expressions for the same idea. For example
“perpendicular aka normal” in Unit 2, Topic 1.B – Bisecting Angles and Lines.

In addition, a set of practice exam questions for Module 4 – Measuring Time,
Shapes and Spaces accompanies this learning guide to enable you to assess
yourself, decide what you need to study, and practice for the exam.

Introduction

Examples are the focus

In this curriculum guide, examples with explanations are the primary tool used
for review. Background for each competency is also given with a brief overview
of what you need to know. Before any examples are given, the main ideas in
each topic are explained and “need to know” information is summarized in
rules and definitions.

Please Note: 

When you work on an example, cover the text below with the laminated card
provided so that you don’t see answers and explanations prematurely.

6 Math – Module 4 – Measuring Time, Shapes and Spaces



A   7   NWT Math Mod 4 

7

Topic 1 – Units of Measurement

Background

Numbers that measure something are used in all trades. A measurement system
gives us the units that give a physical meaning to a number.

Units of measurement include feet, meters, degrees, minutes, gallons and liters.
These units are the result of human decisions about what to use as standards.
Nature has no units attached to itself until people decide that they want to compare
one thing with another.

In this diagram you can see the difference between an object in nature, a river, a
measurable quantity, the string stretched across the river, and a measuring tool that
uses standard units to assign a number, ie a measurement, to the width of the river.

Units are chosen for convenience, for historical or traditional reasons, and for
scientific practicality. For example, the inch is an arbitrary unit, approximately equal
to the length of the second joint of a person’s pointer finger. The metric system is
practical because we use a base ten number system. The binary system is effective
for electronics and computers because two-position switching (i.e. on, off) is the
basic physical device behind even the most complex operations. Work in the trades
and science depends on agreements about what units mean.

Unit 1
Measurement Systems

Math – Module 4 – Measuring Time, Shapes and Spaces

A River A String = Width of River Standard Units 
Measure the String
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UNIT 1

Rulers, tape measures, scales, protractors, thermometers, and clocks are used in the
trades to get information about a quantity that is measurable. Rulers measure
length, protractors measure angles, thermometers measure temperature, and clocks
measure time. Readings from each of these measurement tools will be based on
units that come from a system of measurement.

Two measurement systems are important

In the trades in Canada, the international, or metric S.I. system is important as well
as the Imperial system. Time is measured in both systems by means of the same
units: seconds, minutes, hours, days etc.

Unit 1 – Measurement Systems

Topic 1 – Units of Measurement

What you need to understand about measurement

1. All measurements are based on a measurement system: the S.I or
international metric system (centimetres, kilograms, litres etc), and the
Imperial system (feet, pounds, quarts etc.) are both used in the trades.

2. All measurement systems have standard units that are used to compare a
measurable quantity to the number of standard units it equals.
Measurements tell us “how much” and “how fast”.

Examples: 

A dog team takes 10 days to complete the Yukon quest

A furnace increases room temperature 15 degrees in 20 minutes

The river is 350 meters across at Fort Simpson

3. Numbers with no units attached are “dimensionless” or “scalar” numbers.
The constants in a formula are scalar numbers. The variables in a formula
have measurement units.

Examples:

1. d = vt (distance equals velocity multiplied by time) 

Each variable describes a measurable quantity that will have units
attached. D could be measured in miles or kilometres, v in miles per
hour or kilometres per hour.

2. A = 2h (Average adult height equals twice the average height of a four
year old)

2 is a scalar number, but A and h are variables expressed by a unit of
length, for example centimetres, or inches. If we find that h = 3 feet,
then A = 6 feet. A scalar factor in a formula is also known as a
constant.
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Optional: Some More Theory 

A measurement is the result of comparing a known standard to something that has
a measurable dimension. For example, every time you measure something with a
ruler you are comparing a known standard (the intervals marked on the ruler) to the
length of an object. You might find that the object is 6 inches long. This is the same
thing as saying that the length of the object is equal to the length of six standard
inches placed next to each other. A measurement is only meaningful when we know
what the standard unit (for example one inch) 
looks like.

A number that measures something will have a unit of some kind attached to it.
Carpenters use a tape measure to measure inches, meters, feet, or centimetres.
Cooks use a thermometer to measure degrees of temperature in Fahrenheit or
Celsius degrees, and scale operators use scales to measure pounds, tons, tonnes,
and kilograms.

Scales and measurement

A scale is a relationship that compares two kinds of measurements. A scale is
based on a unit ratio.2

Examples:

1. Within the same measurement system: the scale between feet and inches is 
1 foot = 12 inches.

This diagram shows five of the 12 inches in a foot. The scale in this diagram is
1:1, each space in the diagram equals the space it represents in the real world.
An inch in the diagram = an inch anywhere in the world.

Unit 1 – Measurement Systems UNIT 1
Topic 1 – Units of Measurement

Formulas Based on Measurements Save Work

Measurable quantities that are used in the trades include (but are not limited
to) weight, height, length, width, temperature, time, distance, speed, electric
current, and degrees. These measurable quantities are important inputs into
formulas that give us perimeter, area, volume, density, heat capacity, electrical
resistance, and many other outputs that are useful on the job.

Math – Module 4 – Measuring Time, Shapes and Spaces

One Foot = Twelve Inches

1 2 3 4 5

2 See Math – Module 1, Unit 3, Topic 8 for a review of unit ratios.
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2. Between different measurement systems: the scale between inches and
centimetres is 1 inch = 2.54 centimetres.

3. A scale drawing or map will indicate the
relationship between a length on the drawing
or map and the length it represents in the
world.

1 inch = one mile, 1 cm = .5 km, 1 inch = 100
feet, etc.

A number without a unit description attached
to it is not a physical measurement. 3 is a number, 3 inches is a measurement.
1/2 is a number, 1/2 ton is a measurement.3

Unit 1 – Measurement Systems UNIT 1
Topic 1 – Units of Measurement

Example

A lumber grader measures length, width and thickness of the boards in a pile of
lumber to find the volume in cubic feet. This will tell him how many cubes
measuring one foot on a side his pile of lumber is equal to.

The same calculations could be based on metres and give a different but
equivalent answer. Many trades use formulas to find costs, amounts of
materials, and to estimate production.

3 Numbers can represent the total reached by counting the number of items in a group, for example
“there were 13 people in the cafeteria”. Counting to a total does not require that a unit be attached,
but a description or the context will tell us when a number refers to people, dogs, mountains etc.

13/41/2

1 2

1/40

1 inch =

2.54 cm

A unit ratio is also known
as a scaling factor
because we multiply or
divide with it to find the
relationship between a
map or drawing and what
it represents.

Input

L = Length = 10'
W = Width = 1'
T = Thickness = .25'

Formula

Volume =
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Measurements are inputs into formulas

Taking measurements allows us to solve problems by using formulas. In sections
two and three of this curriculum measurable quantities are used in many of the
examples and problems. For example, pounds of an ingredient in a recipe, the width
of a rafter for a given span, and the time needed for a trip when the velocity and
distance are known. The input numbers in the tables, graphs, and relations studied
in sections two and three often result from measurements in applied situations.

Unit 1 – Measurement Systems UNIT 1
Topic 1 – Units of Measurement

Use a Calculator – And Know the Units Involved

Many calculators have formulas, or can have formulas programmed into them,
that are useful in the trades. Effective use of these formulas requires inputs
based on a correct choice of units.

Examples: 

1. An electrician has programmed his calculator to find resistance in ohms
when he enters voltage in volts, and current in amps.

2. A hairdresser has programmed her calculator to find the amount of
shampoo to order in litres when she enters (inputs) the number of
customers she estimates that she will serve in a month.
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Question 1

A drawing of a house floor plan has a scale of 1 inch = 3 feet. If the length of the
living room floor is 12 feet, how long will the line on the drawing be that represents
this floor?

a) 6 inches
b) 3 inches
c) 3 feet
d) 4 inches

Answer: d

Explanation
The scaling factor is one inch for every three feet of floor. We divide the total floor
length by 3 to find the number of inches that will represent it in the drawing.
12 ÷ 3 = 4.

Question 2

Which of these measurements are not made with the same measurement system?

a) 12 inches and one foot
b) 3 liters and 4 gallons
c) 1 meter and 10 centimeters
d) 4 cubic yards and 1 ton

Answer: b

Explanation
Liters are metric (S.I. system) units of volume, and gallons are imperial units of
volume.

Unit 1 – Measurement Systems UNIT 1
Topic 1 – Practice Exam Questions
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Question 3

Which answer goes from units to subunits in the same measurement system?

a) inches, centimetres, millimetres
b) decimetres, centimetres, millimetres
c) gallons, quarts, liters
d) hours, seconds, minutes 

Answer: b

Explanation
Read from left to right. Centimetres are a subunit of decimetres (1dm = 10cm), and
millimetres are a subunit of centimetres (1cm = 10mm). The other choices either mix
measurement systems (choices a and c) or put the order from subunit to unit
(choice d, minutes are not a subunit of seconds.) 

Question 4

If you want to use a formula that has constants and variables in it,
what will you measure?

a) the variables
b) the constants
c) the measurement system
d) the unknown

Answer: a

Explanation
In a formula the variables are quantities that you can measure directly, or calculate
by using the formula after one or more variables are replaced with measurements.
For example in the formula for the area of a triangle, A = 1/2 bh, there are three
variables and one constant (1/2). We measure b (the base) and h (the height) in linear
units (feet, centimetres etc.) and then use the formula to find A in square units
(square feet, square centimetres etc).

Unit 1 – Measurement Systems UNIT 1
Topic 1 – Practice Exam Questions
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Question 5

What is the actual length of the living room in this floor plan:

a) 8 metres
b) 8 feet
c) 12 feet
d) 4 metres

Answer: d

Explanation
Each cm in the drawing represents one meter in the world. The living room
measures 4 cm in the drawing. Multiply 4 x 1 to find 4 meters as the actual length
of the room.

Unit 1 – Measurement Systems UNIT 1
Topic 1 – Practice Exam Questions

Living2

4 3

1.2Storage

Kitchen

Scale 1 cm = 1 m
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Background

Two measurement systems are commonly used today: the S.I, or international
system based on metric units, (litres, centimetres, grams etc.) and the Imperial or
British system based on inches, pounds, ounces etc. You need to know how to
convert units into subunits and subunits into units in both systems, for example feet
into inches, inches into feet, and meters into centimetres and centimeters into
meters.4

Units are what we measure with. Units include inches and feet, yards and miles for
distance in the imperial system, and centimetres, meters, and kilometres for
distance in the metric or S.I. (System International) system. Units also refer to the
basis for measuring time: minutes and seconds, hours, and days. Other units used
for measurements in the trades include units of weight (pounds, kilograms), units of
volume, (quarts, litres) and units of currency (dollars, cents).

There are many kinds of units, and we need to relate them to each other when they
refer to the same type of quantity. For example, time units can be changed into
other units of time, seconds into minutes, and hours into minutes. Seconds are
subunits of minutes and minutes are subunits of hours.

Another example: 

Units of volume can be changed into each other. Quarts into pints, cubic yards into
cubic feet, and cubic kilometres into cubic metres. The relationship between units
and subunits in the same measurement system is described by a scaling, or
exchange, factor.5

Unit 1 – Measurement Systems UNIT 1
Topic 2 – Units and Subunits

Apples and Oranges…

Notice that we cannot compare units that refer to different types of quantities.
For example, units of time measure something that is different from units of
distance. Units of time cannot be converted into units of distance or volume,
currency, or rates. Units of time can, however, be related to these other units in
a formula. For example, time equals distance divided by velocity in the formula:
t = d/v

4 For clarity we refer to conversion factors when going between measurement systems, and
scaling factors when converting within a measurement system. Both are referred to in this
curriculum as exchange factors.

5 In this curriculum scaling factor and exchange factor mean the same thing.
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The exchange factor for minutes and seconds is 1 minute = 60 seconds. The
exchange factor for money is 1 dollar = 100 cents. These exchange factors are also
unit ratios6 that tell us what one unit of some measured quantity is worth in
comparison to other units in the same measurement system. The scaling factor can
be used to go either from unit to subunit, or from subunit to unit, “ = ” works both
ways.

Unit 1 – Measurement Systems UNIT 1
Topic 2 – Units and Subunits

6 See Math – Module 1, Unit 3, Topic 8 – Ratios and Proportions.

Telling units apart from subunits

A unit of measurement can be both a unit and a subunit in a measurement
system. For example, notice that minutes are subunits of hours, but also that
minutes are units of which seconds are subunits. A yard is a subunit of a mile,
and a foot is a subunit of a yard. When we exchange a yard for the number of
feet it equals, we are going from a unit to a subunit of itself (whole to parts).
When we exchange a yard for the fraction of a mile it equals, we are going
from a subunit to a unit (parts to whole).

T
I

M
E

UNIT SUBUNIT

D
I
S
T
A
N
C
E

Hour Minutes, seconds
Minute Second

Mile Yards, feet, inches
Yard Feet, inches
Foot Inches
Kilometre Metre, centimetre, millimetre
Metre Centimetre, millimetre
Centimetre Millimetre
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Examples

The unit ratios (i.e. scaling factors) for the following quantities (time and length) are
used in many trades:

1. Time: scaled from units to subunits

1 day (unit) = 24 hours (hours are subunits of days)

1 hour (unit) = 60 minutes (minutes are subunits of hours and days)

1 minute (unit) = 60 seconds (seconds are subunits of minutes, hours, and days)

2. Imperial Lengths: scaled from subunits to units

12 inches (subunit) = 1 foot (a foot is a unit based on subunits of inches)

3 feet (subunit) = 1 yard (a yard is a unit based on subunits of feet and inches) 

1760 yards (subunit) = 1 mile (a mile is a unit based on subunits of yards, feet,
and inches) 

3. Metric lengths: scaled from units to subunits

1 kilometre (unit) = 1000 metres (metres are subunits of kilometres)

1 metre (unit) = 100 centimetres (centimetres are subunits of metres) 

1 centimetre (unit) = 10 millimetres (millimetres are subunits of centimetres) 

Unit 1 – Measurement Systems UNIT 1
Topic 2 – Units and Subunits

Some exchanges take several steps 

Example
To change days into seconds, first convert days into hours, then hours into
minutes, then minutes into seconds.

2 days = 2 x 24 = 48 hours = 60 x 48 = 2880 minutes = 60 x 2880 = 172,800 seconds

To change seconds into days, do the reverse, and divide seconds by 60 to get
the equivalent number of minutes. Then divide the minutes by 60 to get the
number of hours, and finally divide the number of hours by 24 to get the
number of days.
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An example: Inches and Feet

The scaling, or exchange, factor between feet and inches is 12. 12 inches = 1 foot.
The inch is the smaller unit. You must divide inches by 12 to get the number of feet
a given number of inches is equal to. 144 inches = 12 feet. If you want to change
from feet to inches, going from the larger unit to the smaller, you multiply the
number of feet by 12 to get the equivalent number of inches.
12 feet = 144 inches.

Unit 1 – Measurement Systems UNIT 1
Topic 2 – Units and Subunits

An exchange factor describes the relationship between 1 unit and 1 subunit and
vice versa. These are also unit ratios because they express the rate of
exchange between one 1 of something (time, length, volume etc.) and an
equivalent number of subunits, and vice versa.

To convert units within a measurement system means to change 1
measurement of a quantity, for example weight in pounds, into something of
equal value within that system, for example weight in ounces. We do this with
multiplication or division and a scaling factor.

You need to know the relationship that defines the exchange of smaller units
for larger ones and vice versa in the same system of measurement. With this
information you can divide to change from smaller units to larger, and you can
multiply to change from larger units to smaller units.

What you need to know:

Going from units to subunits (from big to small: multiply)

1. Find the exchange relationship between the units and subunits.

Examples: 
1 foot = 12 inches.
1 gallon = 4 quarts

2. Multiply the units by the exchange factor

Examples: 
12 feet = 12 times 12 inches = 144 inches
8 gallons = 8 times 4 quarts = 32 quarts

Going from subunits to units (from small to big: divide)

1. Find the exchange relationship between the subunits and units

Examples: 
12 inches = 1 foot
1 quart = .25 gallons

2. Divide the subunits by the exchange factor

Examples: 
144 inches ÷ 12 = 12 feet
32 quarts ÷ .25 gallons = 8 gallons
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Unit 1 – Measurement Systems UNIT 1
Topic 2 – Units and Subunits

Tip…

Write down the name of the units you are going from with an arrow pointing to
the name of the units you are going to. Then write “big to small” (subunit to
unit), or “small to big” (unit to subunit), to help you plan the next step.

Examples
Kilogram � gram (big to small) (multiply) 

Centimetre � metre (small to big) (divide)

Remember…

Only convert the units or subunits that are not already in the desired form.

Example

Change 3 hours and 10 minutes into minutes.

Step 1) 3 hours = 3 x 60 minutes = 180 minutes.

Step 2) add the 10 minutes already given in the desired subunit 
180 + 10 = 190 minutes.
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Exchanging Units for Subunits and Vice Versa

Question 1

What is the dollar value of 525 dimes?

a) $52.50
b) $5.20
c) $525.00
d) $1,525.00

Answer: a

Explanation
Talk yourself through it this way:

1. What kind of quantity is involved? 
Answer: Canadian currency

2. Are we going from big to small or
small to big? 
Answer: we are going from subunits of
dimes to units of dollars, small to big.

3. What is the exchange factor?
10 dimes = 1 dollar

4. Divide
525 dimes ÷ 10 = $52.50

Question 2

Convert 3 lbs. 3 ounces into ounces

a) 48 ounces
b) 92 ounces 
c) 51 ounces
d) 1lb. and 35 ounces

Answer: c

Unit 1 – Measurement Systems UNIT 1
Topic 2 – Practice Exam Questions

BSM
Big � Small
More: Multiply

SBD
Small � Big
Divide
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Explanation
1. What kind of quantity is involved? 

Answer: Imperial weight measurement: ounces

2. Are we going from big to small or small to big? 
Answer: we are going from units of pounds and ounces to subunits of ounces,
big to small: multiply.

3. What is the exchange factor?
1 pound = 16 ounces

4. Multiply the number of pounds by 16 
3 pounds x 16 ounces = 48 ounces 

5. Add the 3 ounces that didn’t need to be converted
48 + 3 = 51 ounces

Question 3

Convert 69 miles into yards

a) 351,440 yards
b) 181,440
c) 15,514 yards
d) 121,440 yards

Answer: d

Explanation
1. Quantity: Imperial distance measurement: miles

2. Going from miles to yards, big to small, multiply

3. Exchange factor: 1 mile = 1760 yards

4. Multiply the number of miles by 1760

69 x 1760 = 121,440 yards

Unit 1 – Measurement Systems UNIT 1
Topic 2 – Practice Exam Questions
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Question 4

What is the number of metres in 341 centimetres?

a) 34.1 metres
b) 3140 metres
c) 3.41 metres
d) 124.1 metres

Answer: c

Explanation
1. Quantity: Metric length measurement: metres and centimetres

2. Going from centimetres to metres, small to big: divide

3. Exchange factor: 100 centimetres = 1 metre 

4. Divide the number of centimetres by 100
341/100 = 3.41 metres

Question 5

How many weeks are in 223 days?

a) 31 weeks
b) 52 weeks
c) 18 weeks
d) 42 weeks

Answer: a

Explanation
1. Quantity: Time, weeks and days

2. Going from days to weeks, small to big: divide

3. Exchange factor: 7 days = 1 week

4. Divide the number of days by 7 
223/7 = 31 6/7 weeks = 31 weeks and 6 days (you may see that 6/7 is equal to 6
days, or look at question 6)

Unit 1 – Measurement Systems UNIT 1
Topic 2 – Practice Exam Questions
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Question 6

How many days are 6/7 of a week?

a) 5 days
b) 4 days
c) 13 days
d) 6 days

Answer: d

Explanation
1. Quantity: Time, days and weeks

2. Going from weeks to days, big to small, multiply

3. Exchange factor: 1 week = 7 days 

4. Multiply the number of weeks by 7
7/1 x 6/7 weeks = 6 days

Unit 1 – Measurement Systems UNIT 1
Topic 2 – Practice Exam Questions
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Background

In the trades you will need to know how to convert quantities from one system of
measurement to equivalent amounts in another system by multiplying or dividing
with conversion factors. You will convert metres to feet, ounces to litres, pounds to
kilograms and vice versa. If you use a calculator to do this, the conversion factors
are stored for you, and you will need to know which numbers to input and how to
describe their relationship to each other as well as the measurement system
involved.

Each metric unit has a corresponding imperial unit it can be converted into and vice
versa.

Conversion factors are the exchange factors for the units you are changing into
each other. Now instead of changing between units and subunits within the same
system, you will be changing between systems that use different standards for
measuring the same quantities.

In every case, identify the conversion factor that changes one of the units you are
going from into one of the units you are going to. Next multiply this factor times
the number of units you are going from to get the equivalent number of units in the
other system that you are going to. Your exam will include a handout of formulas
and conversions similar to this example:

Mathematical Formulas
You may make use of the following formulas when answering certain questions in
this examination.

• = 3.14
• Circumference of a circle = D
• Area of a rectangle = Length x Width
• Area of a circle = r2

• Area of a triangle = Altitude x Base
2

• Volume of a cylinder = r2h
• Volume of a cube = Length x Width x Height

Metric Conversions

Distance
Imperial Metric
1 inch = 2.540 centimetre
1 foot = 0.3048 metre
1 yard = 0.9144 metre
1 rod = 5.029 metres
1 mile = 1.609 kilometres

Capacity
Imperial
1 pint = 0.568 litres
1 gallon = 4.546 litre
1 bushel = 36.369 litres
1 fluid oz. = 28.41 ml
1 quart = 1.137 litres

Unit 1 – Measurement Systems UNIT 1
Topic 3 – Converting Between Measurement Systems

Metric Imperial
1 centimetre = 0.3937 inch
1 metre = 3.281 feet
1 metre = 1.094 yards
1 metre = 0.20 rods
1 kilometre = 00.6214 mile

US
1 pint (U.S.) = 0.473 litre
1 quart (U.S.)= 0.946 litre
1 gallon = 3.785 litres
1 barrel oil = 158.99 litres
1 cup - 8 fl. oz = 227 mil
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Examples

1. How many litres are in 12 imperial gallons? 
1. Write down your target units, “litres”, as a reminder of where you are

headed. We want our answer in litres, gallons � litres
2. What is the exchange factor (aka “conversion factor”) between 

1 gallon and 1 litre?
1 gallon = 4.546 litres

3. Multiply 12 gallons times 4.546 litres to find the number of litres in 
12 gallons.

4. Solution: 54.552 litres, rounding off to the nearest hundredth = 54.55 litres.

2. How many miles are in 603 kilometres?

1. Write down “from kilometres to miles” as a reminder of where you are
headed. We want our answer in miles. Kilometres ➔ miles

2. What is the exchange factor between 1 kilometre and 1 mile? 
Answer: 1 kilometre = 0.6214 miles

3. Multiply 603 x 0.6214 miles to find the number of miles
4. Solution: 603 kilometres = 374.70 miles

3. Change 350 grams into pounds (avoir).

1. We want our answer in pounds (avoir), write down “pounds (avoir)”
2. 1 gram = 0.035 ounces (avoir) (metric to imperial), and,

16 ounces = 1 pound (subunit into unit)
This is a two step problem: first convert grams into the Imperial subunit of
weight (ounces) that we have a conversion factor for. Next, change the
subunit of ounces to the unit of pounds in the imperial system.

3. Multiply 350 grams x 0.035 = 12.25 ounces (grams ➔ ounces)
4. We have less than 1 pound or 12.25/16 = .7656 pounds 

(ounces ➔ pounds).

Unit 1 – Measurement Systems UNIT 1
Topic 3 – Converting Between Measurement Systems

Metric
1 litre = 1.76 pints
1 litre = 0.220 gallon
1 litre = .88 quart

Weight
Imperial
1 ounce (troy) = 31.103 grams
1 ounce (avoir) = 28.350 grams
1 pound (troy) = 373.242 grams
1 pound (avoir) = 453.592 grams
1 ton (short) = 453.592 grams
2000 lb = 0.907 tonne*

*1 tonne = 1000 kilograms

US
1 tablespoon = 14.21 ml
1 teaspoon = 4.74 ml

Metric
1 gram = 0.032 ounce (troy)
1 gram = 0.035 ounce (avoit)
1 kilogram = 2.679 pounds (troy)
1 kilogram = 2.205 pounds (avoir)
1 tonne = 1.102 ton (short)
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Question 1

How many kilometres are in 43 miles?

a) 39.2 km
b) 59.2 km
c) 69.1 km
d) 59.1 km

Answer: c

Explanation
1. We want our answer in kilometres.
2. 1 mile = 1.609 kilometres
3. Multiply 43 x 1.609 = 69.187 kilometres

Question 2

How many metres are in 30 yards?

a) 27.4 m
b) 180 m
c) 90.4 m 
d) 210.4 m

Answer: a

Explanation
1. We want our answer in metres
2. 1 yard = 0.9144 metres
3. Multiply 30 x 0.9144 = 27.43 metres

Unit 1 – Measurement Systems UNIT 1
Topic 3 – Practice Exam Questions
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Background

A metric ruler has divisions based on powers of ten. Metric rulers can be tape
measures, metre sticks, or shorter rulers. A ruler is a number line. Measuring with
the ruler amounts to adding and subtracting numbers. Review the Foundations
section for a discussion of number lines and basic operations including operations
with fractions on an imperial ruler (adding and subtracting fractions of inches.)

The lines on the ruler mark units with longer vertical lines than the subunits.
A metric rule marks three subunits: decimetres = tenths of a metre,
centimetres = hundredths of a metre, and millimetres = thousandths of a metre.

Unit 1 – Measurement Systems UNIT 1
Topic 4 – How to Read a Metric Rule

What You Need to Know About Metric Rulers:

1 metre = 10 decimetres

1 decimetre = 10 centimetres

1 centimetre = 10 millimetres.

The ruler will have short lines marking each millimetre, slightly longer lines to
mark every fifth millimetre, and slightly longer lines again to mark every
centimetre. A centimetre mark occurs every tenth millimetre. A number is given
for every centimetre on the ruler or tape measure.
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A number on a metric ruler can be expressed in centimetres and millimetres.
A decimal point can be used to show the relationship between units and
subunits. 3.2 cm = 3 cm and 2 millimetres. 1.52 decimetres (dm) = 15.2 centimetres,
or 152 mm.

Example

1) Find the following measurements in centimetres and millimetres.

A = 5 mm

B = 9 mm

C = 2 cm

D = 2 cm + 4 mm

Unit 1 – Measurement Systems UNIT 1
Topic 4 – How to Read a Metric Rule

A B C D
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Question 1

Which of the following is not a unit in the S.I. system of measurement?

a) Kilograms
b) Ounces
c) Milligrams
d) Litres

Answer: b

Explanation
Ounces are a subunit of pounds in the Imperial system.

Question 2

Convert 12 inches to centimetres. Round to the nearest tenth.

a) 4.7 cm
b) 14 cm
c) 30.5 cm
d) 10 cm 

Answer: c

Explanation
The answer requires a conversion between measurement systems, ie., from
imperial to metric. The target unit is centimetres. The exchange factor 
(aka conversion factor) is 1 inch = 2.54 cm. Multiply 12 x 2.54 to find 30.48.
This rounds up to 30.5.

Question 3

How many feet are in 3.2 miles?

a) 148,000
b) 23,896
c) 14,800
d) 16,896

Answer: d

Explanation
This problem requires an exchange between a subunit (feet) and a unit (miles)
in the imperial system of measurement. We are going from unit to subunit. We will
multiply 3.2 miles by the exchange factor: 1 mile = 5280 feet. 3.2 x 5280 = 16,896
feet.

Unit 1 – Measurement Systems UNIT 1
Topic 4 – Practice Exam Questions
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Question 4

How many seconds are in 1.5 days?

a) 36,000
b) 360,000
c) 129,600
d) 132,600

Answer: c

Explanation
This is a three step problem. We convert from unit to subunit three times. First days
into hours, 1 day = 24 hours, then hours into minutes, 1 hour has 60 minutes, and
finally minutes into seconds, 1 minute has 60 seconds. 1.5 days has 
24 + (1⁄2 x 24) = 36 hours. 36 hours has 36 x 60 minutes = 2,160 minutes. 2,160
minutes has 60 x 2,160 seconds = 129,600 seconds.

Question 5

How many centimetres are in 2.5 decimetres?

a) 25
b) 250
c) .25
d) 1.25 

Answer: a

Explanation
The relationship between centimetres and decimetres is: 
1 decimetre = 10 centimetres. 10 x 2.5 = 25 centimetres in 2.5 decimetres.
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Topic 4 – Practice Exam Questions
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Background
Circles, squares, and triangles are basic shapes that are used in the trades. They can
be described by measurements in two dimensions, for example length and width.
They can be drawn on a plane, for example a piece of paper.

Basic shapes are defined by lines and
angles. A line is a series of points that are
next to each other. Every line has two
endpoints, that can be labeled by letters.7 A
line can be measured. A square is
described by the length of one side of a
four sided figure, and the knowledge that
all four sides are equal to each other. A
triangle is defined as a plane figure with
three sides and three angles. Triangles can
have different shapes that depend on the
length of the sides and the size of the
angles. A circle is defined by the curved
line that is the same distance from the center at all points.

Problems in the trades use geometric relationships to complete measurements, and
to calculate perimeter, area, and volume.

Unit 2
Measuring Shapes

31Math – Module 4 – Measuring Time, Shapes and Spaces

7 Some texts place a horizontal line above the letters that label the endpoints of a line. In this
curriculum the horizontal line is omitted. AB means the line between point A and point B.

A

Four Right 
Angles

Three
Angles

Four Lines Three Lines

B
Line Square Triangle Circle

Centre
Radius

A plane contains all of the points
on a flat surface.

A dimension is a measurable
quantity.

Length, width, and height are
dimensions that measure shapes.
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32

Angles are measured in degrees. The unit of measurement for an angle is the
degree. An angle is measured at the vertex, the point where the rays of the angle
meet. The rays of an angle are lines that can be extended without limit.8 As the rays
extend, the distance between them increases, but the angle between them
doesn’t change.

Angle ABC is written as /_ABC or /_CBA. The middle letter, B, in this angle, names the
point at the vertex. Notice that the angle of 45 degrees won’t change when the rays,
BA, and BC are made longer. Every angle can be described by three letters with the
vertex point in the middle. The outer letters can be switched and still describe the
same angle. An angle can also be labeled by a single letter or number on a
diagram.

32 Math – Module 4 – Measuring Time, Shapes and Spaces

8 Angles that have equal measures are congruent angles. The symbol �� means “is congruent
to”. Congruence means that two separate shapes share the same measure of angles or sides. The use
of the “=” sign is often used in the trades to mean “equal in size”, but in pure geometry the idea of
congruence is separated from the idea of equality. In geometry, equality between two shapes would
mean that they are the same, or identical, object. This is why an angle and the size of an angle are
treated as separate ideas. Geometry texts use, “the measure of an angle” to refer to the size of an
angle. In line with the practical purpose of the trades, the name of an angle will also refer to its size
unless otherwise noted in this curriculum.

A

CB

CA

B

Any choice of three letters can be used to label
an angle, but the middle letter will always
name the vertex.

/_ABC = /_CBA It doesn’t matter which ray is
named first, but the middle letter must always
label the vertex.

This symbol indicates that the angle is a right
angle.

Geometry is a Greek word meaning “the measurement of the earth”.
Measurement is used in every trade. Geometry deals with shapes and their
properties. On the trades entrance exam, four sided figures, the circle and the
triangle are the most important shapes to understand.
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A 45 degree angle is half as big as a right angle. The corners of a window or picture
frame are often joined at a 45 degree angle. A right angle is equal to the sum of
two 45 degree angles.

In carpentry, corners meet at a 90 degree angle, but they can be cut on a diagonal
that divides the corner into two 45 degree angles next to each other as shown in
the picture frame.

A right angle is also the sum of two 45 degree angles:
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When two angles share a vertex and one ray in common they are called adjacent
angles.

Angle ABD is adjacent to angle DBC. The line DB is a bisector of right angle ABC.
These angles are also complementary. Adjacent angles are called complementary
when they add up to 90 degrees, and supplementary when they add up to 180
degrees.

Angle ABD is adjacent to angle DBC, and vice versa. They share a vertex at point B.
They are supplementary because they add up to a straight angle of 180 degrees.

Angles you need to know

A right angle measures 90 degrees, and a straight angle measures 180 degrees.
Other angles are described by the range of values that they can have: 

1. Acute angles are less than 90 degrees.

2. Obtuse angles are more than 90 degrees but less than 180 degrees.
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Important lines: perpendicular, intersecting, and parallel

When two lines cross each other (aka “intersect”) at 90 degrees, they are called
perpendicular lines. The symbol is used to show that two lines meet at a right
angle. The perpendicular to a given line can also be called the normal line.9 In the
trades keeping things “straight, level and square” requires proof that things meet at
right angles to each other. There is only one line that will be perpendicular to a
given point on a line. Carpenters use a square to find perpendicular lines.

When two lines cross each other, they intersect. The angles that are formed on
opposite “sides” of the intersection are equal in size to each other. The angles
across from each other are equal. The angles can vary when lines intersect, but the
relationship of equality between opposite angles won’t change.

Angle a = angle b, and angle c = angle d in both diagrams. When you see
intersecting lines, label the four angles and note these equalities.

35Math – Module 4 – Measuring Time, Shapes and Spaces

9 In physics and engineering the perpendicular can also be called an orthogonal line.
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Parallel Lines

When two lines in the same plane can never intersect, they are parallel to each
other. When two lines are parallel the symbol II is used. A transversal is a line that
crosses two or more parallel lines.

Unit 2 – Measuring Shapes UNIT 2
Topic 1 – Practice Exam Questions
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Line EF is a transversal and AB, CD

What you need to know about parallel lines and transversals:

1. The corresponding angles 1 and 2, 3 and 4, 5 and 6, 7 and 8 will be equal
when a transversal crosses two parallel lines. When we know that any of
these pairs are equal, we can prove that the lines being crossed are parallel.

2. Angles on opposite sides of the transversal and between the parallel lines
are called alternate interior angles. There are two pairs of alternate interior
angles: 7 and 2, 3 and 6. When we know that two alternate interior angles
are equal we can conclude that the lines crossed by the transversal are
parallel.

3. Interior angles on the same side of the transversal are 3 and 2, 7 and 6.

4. Exterior angles on the same side of the transversal are 1 and 4, 5 and 8.

5. Vertically opposite angles are equal to each other: 5 = 3, 1 = 7, 6 = 4, 2 = 8.

6. Adjacent angles are supplementary: The sum of the following pairs equal
180 degrees: 1 and 5, 7 and 3, 6 and 2, 8 and 4.
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UNIT 2
Topic 1 – Practice Exam Questions

Question 1

Which of the following angles is obtuse?

a) angle BCD
b) angle DCB
c) angle CAB
d) angle CDB 

Answer: c

Explanation
An obtuse angle can have a range of values greater than 90 degrees but less than
180 degrees. Choices a, b, and d are less than a right angle. Only choice c is greater
than 90 degrees but less than 180 degrees.

Question 2

When two lines intersect what can be said about the angles that equal each other
(ie. Have the same measure)?

a) The angles next to each other are equal.
b) The angles across from each other are equal.
c) The angles that are adjacent are complementary.
d) The angles that are greater than 90 degrees are equal.

Answer: b

Explanation
When lines intersect they form four angles. The sizes depend on how “slanted” the
lines are, but the angles across from each other will always be equal.

Question 3

What is the size of the angle that bisects a 72 degree angle?

a) Can’t tell without a protractor or compass.
b) 36 degrees
c) 144 degrees
d) 12 degrees

Answer: b

Explanation
Divide 72 degrees in half to find the answer.
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CB is a diagonal
AB II CD
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Question 4

How many lines are perpendicular to each point on a line?

a) As many as you wish.
b) Only one.
c) Two intersecting lines.
d) A pair of parallels.

Answer: b

Explanation
A perpendicular crosses a given point at an angle of 90 degrees. There is only one
line that can do this for each point on a line.

Question 5

Identify the alternate interior angles between the transversal and two parallel lines:

a) e and d, c and f
b) b and c, f and g
c) b and d, f and h
d) b and c, c and f

Answer: a

Explanation
Refer to the discussion and diagram of transversals and parallel lines given earlier.
Interior means the space between the parallel lines, and alternate means on
opposite sides of the transversal.

a b
c d
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g h
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UNIT 2
Topic 1 – Practice Exam Questions

Question 6

Which angles are supplementary?

a) A right angle and a 90 degree angle.
b) 1 degree and 180 degrees.
c) 45 degrees and 145 degrees.
d) 60 degrees and 30 degrees.

Answer: a

Explanation
Any two angles that add up to 180 degrees are supplementary. A right angle = 90
degrees. Choice a adds two right angles to get a straight angle of 180 degrees.

Question 7

If AB is parallel to CD which angles will not be equal to each other?

a) 1 and 2
b) 1 and 3
c) 5 and 6
d) 8 and 7

Answer: b

Explanation
When a transversal crosses a pair of parallel lines, the corresponding angles are
equal. Choice b describes supplementary angles and they are not equal unless the
transversal is a perpendicular, which we cannot assume is the case based on the
problem. Angles 1 and 3 do not correspond because they do not have locations that
are in the same relationship to the transversal as the other pairs.
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Question 8

How can a contractor prove that the forms on opposite sides of a foundation are
parallel to each other?

a) Place a straight edge that intersects both sides and show one pair of opposite
angles are equal.

b) Place a straight edge that intersects both sides and show that no pairs of
corresponding angles are equal.

c) Place a straight edge that intersects both sides and show that two alternate
interior angles are equal.

d) Place a straight edge that intersects both sides and show that the sum of the
exterior angles on the same side of the transversal is 180 degrees.

Answer: c

Explanation
Refer to the diagram used in question 7 and note that angles on opposite sides of
the transversal and between the parallel lines are called alternate interior angles.
There are two pairs of alternate interior angles: 7 and 2, 3 and 6 in the diagram.
When we know that any two alternate interior angles are equal we can conclude
that the lines crossed by the transversal are parallel. This will prove that the
contractor’s forms are parallel, or an equal distance apart at all points.
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UNIT 2
Topic 1.A – Angles and Circles: How to Use a Protractor

There are 360 degrees in a circle. If you picture a ray moving anticlockwise, it will
complete a circle of 360 degrees when it goes around one time and returns to its
starting position. This is true for any circle, wheel, pulley, gear or propeller. A
straight angle is halfway around a circle. Notice that the diameter of a circle is a line
that makes a straight angle with its vertex at the center of the circle. Every time a
circular saw blade rotates once, it describes a circle and goes through 360 degrees.

A protractor measures any of the angles in a half circle.

A protractor looks like this:

A protractor measures 180 degrees in a semicircle. The centre of the base is placed
at the vertex of an angle with the edge on one ray. Angles are measured by looking

where the other line forming the angle crosses the protractor scale. This number is
the number of degrees that measures the size of the angle. It is often useful to
imagine the vertex of an angle as the center of a circle.

A protractor has two scales: an outer scale running anticlockwise from 0 to 180
(from right to left), and an inner scale running clockwise from 0 to 180 (from left to
right). The sum of the angles measured by the same point on both scales will
always = 180 degrees. For example, the line perpendicular to the base makes a
ninety degree angle on both scales, and their sum is 180 degrees.

One Rotation = 360°
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UNIT 2
Topic 1.A – Angles and Circles: How to Use a Protractor

You can see that point B is the vertex shared by two angles that supplement each
other because they add up to 180 degrees: a straight angle, or line.10 ��ABD = 120
degrees, and ��DBC = 60 degrees. These are supplementary angles. Complementary
angles add up to 90 degrees. Two 45 degree angles are complementary, a pair of
angles that measure 30 degrees and 60 degrees are also complementary.

For Greater Clarity: 
Notice that you can place the base of the protractor on either side (leg) of any
angle, but the centre of the protractor base must be located at the joining point (the
vertex) of the angle's sides.

The diagram above measures ��ABD = 120 degrees, by putting the base of the
protractor on the ray AB with the centre on B. Here you use the scale on the
protractor that starts from 0 degrees on the left. However, if you choose to put the
protractor on the ray DB you would use the outer scale beginning with 0 on the
right to once again find that the angle measures 120 degrees.

The letters that describe the angle and your choice of position for the protractor tell
you which scale to read. For example, if you are measuring ��DBC = 60 degrees
with your protractor’s base on ray BC, (as in the diagram) you will use the outer
scale on the protractor that starts from 0 degrees on the right. The sum of the inner
and outer measures for any point on a protractor are supplementary and will
always equal 180 degrees.
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10 Some math texts use m ��to mean "measure of angle". In this curriculum it is assumed that the
symbol for an angle will mean the measure of the angle.
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Examples

1. A protractor placed on line AB gave angle DEB = 40 degrees and angle 
CEB = 135 degrees. What is the size of angle CED?

Answer: 95°

The size of angle CED could be read directly by moving the protractor into a
new position with the base of the protractor on DE. Or, we can use the
information given in this problem to subtract 40 degrees from 135 degrees. The
answer will tell us how many degrees apart 135 is from 40. This difference will
equal angle CED. 135° – 40° = 95°. We can check this answer by adding 
95° + 40° to get 135°.

2. What is the size of angle CEA?

Answer: 45 degrees.

You can see that the sum of angles CEB and AEC must be 180 degrees to equal
the straight angle AEB. We can write an equation to solve for angle CEA: CEA =
180° – 135° = 45°. Angles AEC and CEB are supplementary. We can also see that
angles DEB + DEC + AEC will equal 180 degrees as well. This statement will also
be true: AEB = 40° + 95° + 45° = 180°.
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UNIT 2UNIT 2
Topic 1.B – Bisecting Angles and Lines

A line that is drawn at the halfway point of an angle divides it in half, or bisects it.
For example, the bisector of a 90 degree angle is located at 45 degrees.

You can find the bisector of an angle by dividing it in half and using a protractor to
draw the bisecting line or ray. You can also bisect an angle by using a straightedge
and a compass.

Construct an Angle Bisector

1. Put the point of the compass on the vertex A. Draw a circle that intersects 
(i.e. crosses) the sides of the angle you want to bisect.

2. Label the points of intersection B, and C, and then use each of these points as
the center of a circle with the same radius. You can lock the compass to make
sure the radii are equal. The circles will intersect at point D.

3. Draw a line from A to D and you will have the angle bisector. Notice that this
method divides an angle without measuring the size of the angle.

A ray or line that divides an angle into two equal angles is called the bisector
of the angle.

A

A

B

C

D

A

B

C

D

Unit 2 – Measuring Shapes UNIT 2

4444 Math – Module 4 – Measuring Time, Shapes and Spaces

UNIT 2UNIT 2
Topic 1.B – Bisecting Angles and Lines

A line that is drawn at the halfway point of an angle divides it in half, or bisects it.
For example, the bisector of a 90 degree angle is located at 45 degrees.

You can find the bisector of an angle by dividing it in half and using a protractor to
draw the bisecting line or ray. You can also bisect an angle by using a straightedge
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sure the radii are equal. The circles will intersect at point D.

3. Draw a line from A to D and you will have the angle bisector. Notice that this
method divides an angle without measuring the size of the angle.

A ray or line that divides an angle into two equal angles is called the bisector
of the angle.
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Bisecting a Line

A line that cuts another line in half by intersecting it at 90 degrees is a
perpendicular bisector. You can draw a perpendicular bisector by measuring a line,
dividing it in half, and then using a protractor or square to draw a line at right
angles to this point. You can also construct a perpendicular bisector to a line by
following these steps:

Construct a Perpendicular Bisector

1. Draw two circles that have their centers at the end points, A, B, of a line. Make
each circle with the same radius, and label the points where these circles 
intersect C, and D. Draw a line connecting D and C and you will have the 
perpendicular bisector for line AB.
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A figure with straight lines for sides (as opposed to curved lines) can range from a
triangle with three sides to a figure with any number, n, of sides. An n sided figure
is called a polygon, or "many angled and sided figure". If the sides of a polygon are
all equal to each other, the figure is called a regular polygon. For example, a
hexagon is a regular polygon with six sides. A polygon with sides that are not all
equal is an irregular polygon.

Quadrilaterals are figures with four sides in the same plane. This means that all
sides (lines) are on the same surface. A line called the diagonal can be drawn from
two opposite "corners" of any four sided figure, examples are shown on the next
page.

The sides of a four sided figure meet at vertices that form angles. The sum of the
four angles in any quadrilateral is 360 degrees. You can see this by noticing that
any quadrilateral is the combination of two triangles that share the diagonal as one
of their sides.11 Tick marks are used to show sides that have the same length in the
examples that follow.

When part of a line is labeled, it is called a line segment 

11 See Unit 2, Topic 3 – Triangles, for a demonstration that the sum of the angles in any triangle is 180
degrees.
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What you need to know about four sided figures:

1. A parallelogram has opposite sides that are parallel and congruent. The
opposite angles are equal.

2. A Rhombus is a parallelogram with sides that are equal in length.

3) A trapezoid has only one pair of parallel sides known as bases.

4) A rectangle is a parallelogram with four right angles

5) A square is an example of a rectangle that has equal sides. A square is also
an example of a rhombus with four right angles.

6) The sum of the four angles in any quadrilateral is 360 degrees.
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Examples

1. If quadrilateral has two sides that are parallel, what must be true?

a) The diagonals are equal.
b) The transversals are parallel.
c) The parallel sides must be opposite each other.
d) The bases are equal.

Answer: c

Explanation

This question is typical of those that require a combination of knowing
definitions and being able to sketch both examples and counter examples
based on the problem. For example, choice a suggests something that could be
true, but is it? Try several sketches that use the information given: namely that
two sides of a four sided figure are parallel.

The tick marks show the parallel sides in each figure, and the dotted lines show
the diagonals. You can see that some diagonals are equal (2), and some are not
(1) and (3), yet each figure has at least two parallel sides. If you are testing the
claim that diagonals are equal, (2) disproves this, and is known as a
"counterexample".

Note the importance of thinking "at least" when you are given a problem that
states a fact about a shape. Don’t incorrectly assume that the description in
this problem means a figure that "only" has two parallel sides. In this problem
we know only that there are at least two parallel lines, and this doesn’t rule out
squares and rectangles, which have pairs of parallel sides.

The answer, c, is the result of logical thinking about what must be true based on
what we are told. The definition of parallel requires that parallel lines be
opposite each other in a quadrilateral, otherwise they wouldn’t be an equal
distance apart at all points. Choices b and d can be ruled out because they are
irrelevant: there are no transversals in a quadrilateral, or they make assumptions
that can be disproved. Choice d is disproved by counterexamples 1 and 3 in the
diagram.
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2. One angle of a quadrilateral measures 90 degrees. What will be the sum of the
remaining angles?

a) 180 degrees.
b) 90 degrees.
c) 270 degrees.
d) Can’t tell from this information.

Answer: c

Explanation
The sum of the four angles in a quadrilateral is 360 degrees. 360° – 90° = 270°.

3. What makes a rectangle different from a square?

a) A square has more diagonals.
b) A square has two sets of parallel sides.
c) A square is smaller.
d) A square has equal sides.

Answer: d

Explanation
The process of elimination will work on choices a, b, and c – they are false. The
difference between a rectangle and a square is the fact that squares have all
equal sides, while rectangles have pairs of equal sides. You can also see that a
square is a "special case" of a rectangle because, like a rectangle, it has two
pairs of parallel sides, however it is the equal length of these sides that defines
a square.
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Types of Triangles

Triangles are three sided figures that can be described by their side lengths and/or
their angle sizes. A triangle is a figure with three sides and three angles inside. The
angles inside are called internal or interior angles. The internal angles of a triangle
add up to 180 degrees. A triangle is labelled by giving a letter name for each angle.
The triangle is named by the three letters, and each angle by the single letter at the
point where two sides meet.

Example

Triangle ABC has three internal angles, angle A, angle B, and angle C.

Angle A + angle B + angle C = 180 degrees. The triangle chosen for this example is
equilateral, meaning that the sides have equal lengths and the angles are = 60
degrees.

The three internal angles of a triangle open into the triangle’s interior. If a line is
drawn to extend the leg of an internal angle, we get an external angle that is
supplementary to each internal angle: angles a, b, and c are internal angles. The
opposite angles of intersecting lines are equal, and are labelled a’, b’, and c’. The
supplementary angles for each internal angle are also shown. Their size will equal
180 degrees minus the size of each interior angle. An understanding of these
relationships will help you identify types of triangles and solve problems on the
exam.
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You can prove that the sum of the internal angles equals 180
degrees

1. Cut out a triangle of any shape and label each interior angle.

2. Cut the corner containing each interior angle off.

3. Arrange the corners in a line with the interior angles next to each other
sharing a common point as their vertex. The angles add to give a straight
line.

4. You will get a straight line along the edge of the corners when they are
arranged this way that show that their sum is a straight line = 180 degrees.
The diagram shows the addition of angles A + B + C makes a straight line,
ie, a straight angle. Triangles of every shape produce this result.
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Learn to Recognize Six Types of Triangles

Any triangle can be described as an example of one or more of six types. Three
types are based on side length relationships, and three are based on angle
relationships.

Three Angle to Size Types

Type 1 Acute Triangles

The internal (or interior) angles are each less than 90 degrees.

Type 2 Right Triangles

One internal angle = 90 degrees.

Type 3 Obtuse triangles

One angle is greater than 90 degrees.
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Three Side to Length Types

Type 4 Scalene triangles

No two sides are equal.

Type 5 Isosceles triangles (pronounced "eye-sah-so-lees")

At least two of sides are equal.

Type 6 Equilateral triangles

Three sides are equal in length and three angles are equal. Equilateral triangles
have all three angles = 60 degrees.

Some triangles can be described in more than one of these ways. For example, an
equilateral triangle is also an acute triangle. An obtuse triangle may also be a
scalene triangle if, in addition to having one angle greater than 90 degrees, it also
has no two sides of equal length.

This is an obtuse scalene triangle because angle ABC is greater than 90 degrees,
and no two sides are equal.
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Question 1

A triangle has three equal sides. What will the size of its interior angles be?

a) Can’t tell from this information 
b) 45 degrees 
c) 90 degrees 
d) 60 degrees

Answer: d

Explanation
We know that the angles opposite a pair of equal sides will be equal in a triangle.
An equilateral triangle has equal sides and equal angles. To find the size of each of
three angles that must add up to 180, find 180 ÷ 3 = 60°.

Question 2

A right triangle must have one angle equal to:

a) 45 degrees 
b) 60 degrees 
c) 90 degrees 
d) 180 degrees

Answer: c

Explanation
A right triangle has one angle equal to 90 degrees. No triangle can have more than
one right angle.

Question 3

An isosceles triangle has:

a) one right angle.
b) one pair of equal sides.
c) three equal angles.
d) none of the above.

Answer: b

Explanation
An isosceles triangle is one with two sides that are equal. They can range from
very "thin" – not much more than a vertical line, to very "flat" – not much more than
a horizontal line.
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Question 4

A triangle with one angle greater than 90 degrees is called:

a) binary.
b) equilateral.
c) acute.
d) obtuse.

Answer: d

Explanation
See the definitions for obtuse and acute. Any interior angle greater than 90 degrees
makes a triangle an example of an obtuse triangle.

Question 5

Which type of triangle has no equal sides?

a) Acute
b) Isosceles
c) Scalene
d) Obtuse

Answer: c

Explanation
A scalene triangle has no sides equal to each other.

Question 6

In triangle XYZ, if angle X = 49 degrees, and angle B = 25 degrees, what will angle Z
equal? 

a) 90 degrees
b) 45 degrees
c) 60 degrees
d) 106 degrees

Answer: d

Explanation
We know the sum of the three angles in any triangle = 180 degrees. Add the two
angles we know and subtract the result from 180 degrees to find the missing angle.

25° + 49° = 74°

180° – 74° = 106°

Angle Z = 106°
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Question 7

If we want to design a triangular yard that will have one angle = 90 degrees and the
remaining two angles equal to each other, what will each of these angles have to
be?

a) 30 degrees
b) 45 degrees
c) 70 degrees
d) 18 degrees

Answer: b 

Explanation
Every triangle has only 180 degrees in it. 90 degrees are already used up by one
angle given in the problem. This means 180° – 90° = the number of degrees left to
be split equally between the two angles we are looking for. 180° – 90° = 90°.

Divide 90°/2 = 45° to get the answer. Each angle will equal 45 degrees.

Question 8

What is the size of the interior angles of this triangle?

a) 60 degrees, 30 degrees and 30 degrees
b) 30 degrees, 45 degrees and 55 degrees
c) 45 degrees, 45 degrees and 90 degrees
d) 60 degrees, 60 degrees and 60 degrees

Answer: d

Explanation
The interior angles a, b, and c, are inside the triangle. We are given two exterior
angles. We know that a straight line = 180 degrees. Therefore the sum of 
120 + b = 180°, and the sum of 120° + a = 180°. Angle a and angle b must each equal
60 degrees. The remaining interior angle, c, is 180° – 120° = 60°. We can see that this
is an equilateral triangle.
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Question 9

A surveyor knows that one angle of a triangle is 60 degrees. He also knows that one
of the two remaining angles is 3 times as large as the other. What are the sizes of
the two angles?

a) 45°
b) 40° and 50°
c) 60° and 30°
d) 90° and 30°

Answer: d

Explanation
An equation built on what you know about the sum of the angles in a triangle will
answer this question. We know that the sum of the remaining angles will equal 180°
– 60° = 120°. We also know that one angle is three times the size of the other. If x
represents one angle, then 3x will equal the other and their sum will equal 120.

x + 3x = 120°

4x = 120°

x = 30°

If one angle is 30 degrees, then the other is 3x or 90°. The triangle will have angles
that measure 60°, 30° and 90°.
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When two triangles have the same angles and sides they are congruent. The
symbol �� means congruent. Congruence between triangles means that one could
be placed on top of the other and their boundaries would be identical. Congruent
triangles have both the same shape, and the same size. Similar triangles, however,
only have the same shape. Their sizes will be proportional but not necessarily
equal. The sides of similar triangles will be multiples of each other.

Triangle 1 is congruent (��) with triangle 2. Triangle 3 is similar (~) to triangle 4.

It can save work to know that two triangles are congruent by comparing only some
of their sides and angles. You can also apply what you know about work with
proportions to solve problems with similar triangles.

There are three ways to prove that two triangles are congruent.

What You Need to Know About Congruent Triangles: 

1. (SSS) Side, Side, Side: When three corresponding sides have the same measure
the triangles are congruent, and you can conclude that the corresponding
angles are also equal.

�ABC �� �DEF because the length of AB = EF, BC = DE, and AC = DF. The tick
marks show the sides that correspond to each other such that one triangle
could be made to overlay the other if the corresponding sides were placed on
top of each other.

1 2 4 4
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If you cut out triangle ABC you would have to flip it so that AB lies over EF to
show congruence. Simply rotating the triangle on the paper won’t allow you to
place corresponding sides over each other. Triangle DEF is called a reflection of
triangle ABC "through" a perpendicular line, and triangle ABC is a reflection of
DEF. Sometimes a triangle has to be transformed by reflecting it, sliding it, or
rotating it, to see congruence. You can also see that any plane figure can be
transformed in one or more of these ways: sliding, rotating, flipping.

2. (SAS) Side, Angle, Side: when two sides and the angle between them have the
same measure in two triangles, then the triangles are congruent and we can
conclude that the third sides and angles are equal.

The angle marks and tick marks tell us what lines and angles have the same
measure. �ABC �� �DEF because angle C = angle E, and the corresponding
sides of angles ACB and DEF are equal: AC = DE (shown by three tick marks),
and EF = BC (shown by two tick marks). Notice that one triangle would have to
be rotated before it could be slid to overlay the other. Either triangle can be
chosen to accomplish this. In this example, a flip to produce a reflection is not
needed.

3. (ASA) Angle, Side, Angle: When two angles are equal and the side between
them is equal we can conclude that the triangles are congruent. This means that
the third angles will be equal, and the two other corresponding sides will be
equal.

� NOP �� � QRS because angle N = angle Q, and angle P = angle S, and NP
equals QS. In this diagram you can picture congruence by mentally sliding one
triangle on top of the other. No flips or rotations are needed. Or, use scissors to
cut one out and complete the slide.
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What You Need to Know About Similar Triangles: 

1. Similar triangles have the same shape such that one can be slid, rotated, or
flipped to match up 3 equal angles and corresponding sides inside the other.
The triangles will have different sizes, but the corresponding angles will be
equal and the side lengths will be multiples of each other (ie be proportional).
As you will see in the examples below, proof of similarity allows measurements
of a small triangle to be multiplied and transferred to the measurement of a
larger triangle that we are interested in.

Here angle A = angle D = 90°. Recall that the same angle can have rays of
different length. Here the lines from vertex D that form 2 sides of triangle DEF
are longer than the lines from vertex A that form two sides of triangle ABC.

We can see that triangle DEF is an enlargement of triangle BAC, and BAC is a
reduction of DEF. The triangles are similar because the corresponding sides are
in proportion: 

The scaling factor that relates triangle DEF to triangle ABC is 1:2 because
triangle ABC is .5, or 1⁄2 the size of triangle DEF.

In this example no rotations or reflections are needed to see the similarity. One
triangle can be slid over the other until the corresponding lines coincide:
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Triangle ABC and triangle DEF have been slid on top of each other to show their
similarity.

You can see that a scaling factor relates two similar triangles.12 In this example
triangle DEF is twice the size of Triangle ABC. ED is twice as long as AB, DF is twice
as long as AC, and EF is twice as long as BC.

12 See Unit 1, Topic 3 – Converting Between Measurement Systems for a discussion of scaling factors
and scaled drawings.
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Question 1

What is the height of the crane in this diagram: 

a) 60 feet
b) 36 feet
c) 30 feet
d) 56 feet

Answer: b

Explanation
Use similarity of the two triangles to solve for the height of the crane. Both
triangles have a right angle, and the corresponding bases are proportional because
30 = 5 x 6. 6 is the scaling factor that relates the two triangles. The large triangle is
six times bigger than the small one. The triangles are proven similar by using the
SAS rule.

Also note that the smaller triangle can be slid right to show the corresponding
sides. You can also use the scaling factor of 6 to see that the height of the crane will
equal 6 times the 6’ height of the person. The corresponding sides form this
proportion: 
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Question 2

A surveyor wants to measure the width of a lake, line DE, without getting wet. He
draws the following sketch based on measurements he has made and uses the fact
that alternate interior angles of a transversal between parallel lines are equal: 

How can he find the distance across the width of the lake?

a) Use the Pythagorean relationship.
b) Multiply 100 x 2.
c) Solve the proportion: 100/DE = AB/AD.
d) Measure AE and divide by 2.

Answer: c 

Explanation
This problem gives enough information to conclude that triangle ABC is similar to
triangle ADE. We use the fact that both triangles have 45 degrees at one
corresponding vertex, point A. It helps to realize that triangle ABC is overlaying
(superimposed on) triangle ADE. The tick marks tell us that angle ABC is the same
size as angle ADE, and that angle ACB is the same size as angle AED. Because the
three angles of both triangles are equal, we conclude they are similar: and that
means their sides will be in proportion. We are not given the measurements for AB,
AD, AC, AE, but we can set up the proportion in choice c that will allow us to solve
for DE after dry land measurements are made of AB, and AD. By cross multiplying
we get

100 Yards45°A
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E

100AD
AB

DE =

The surveyor will need to measure AD and AB to find the solution.
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Question 3

In the following diagram, �NMO �� POM. Which of the following do not correspond
to each other:

a) MN and OP
b) Angle P and angle N
c) MP and NO
d) OP and ON

Answer: d

Explanation
We are told that the triangles are congruent. You can see this mentally by imagining
a reflection and a rotation that puts point N over P, and side NM over side OP. We
know the triangles are equal, and one will lie exactly over the other. Choice d names
two sides that are not equal to each other in length. The other choices name equal
and corresponding lines.
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Background

Right triangles are important for surveying and building. A complete description of
a right triangle can be given when we know the size of any two sides.

The hypotenuse is the side of a right triangle that is opposite the right angle.
Hypotenuse is a Greek word meaning "stretched below". The length of the
hypotenuse can be calculated by solving an equation that relates the squares of the
sides to each other in a right triangle. No matter what the shape of the right
triangle, the equation will work. You will need to understand squares and square
roots to work with this equation. Review Math – Module 1, Unit 3, Topic 6 – Bases,
Exponents and Square Roots.

Right triangles with whole number sides are useful in the trades.

A series of triangles with integer sides follows this pattern:

(leg, leg, side)

3, 4, 5

6, 8, 10

9, 12, 15

One leg increased by three, the other by four, and the hypotenuse by 5, will give the
next three values in the series: 12, 16, 20. All integer right triangles are similar and
are related by multiples of 3, 4, 5. However, many right triangles have integer sides
but a hypotenuse that is not.

The square of the hypotenuse = the sum of the squares of the remaining sides
in a right triangle.

If we use the letter c for the hypotenuse (side opposite the right angle), and a
and b for the remaining sides, this is the equation that will let us calculate the
length of the hypotenuse: 

a2 + b2 = c2 aka Pythagoras’ Theorem

The sum of the squares of the sides = the square of the hypotenuse.

Rearrange this equation to find the solution for the length of the hypotenuse:

a2 + b2c=

90°

A

B

C = Hypotenuse
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If we know a and b we can calculate c, the hypotenuse.13 c will equal the square root
of c2, and c2 = the sum of a2 and b2.

Sample problems: 

1. In a right triangle with a = 4 and b = 16, what is the length of c?

42 +162 = c2 = 272

If c2 = 272 then c = ������272 = ��16 ��17 = 4��17  = 16.49

The hypotenuse = 4��17. We can estimate the square root of 17 as bigger than
four but less than five. The length of the hypotenuse will be a little more than
16.

2. What is the hypotenuse of a right triangle with one side = 12,
and one side = 20

144 + 400 = c2

c =  ����544  =  ��16 ��34 = 4��34 = 4��16 �����2.125 = 4 x 4�����2.125  = ��16 �����2.125 

or use a calculator to find the answer with these keystrokes: 544 , �� 
or �� , 544 depending on the calculator you use.

13 Proof for this relationship uses the ability to measure area, and is given in Unit 3, Topic 2 – Area:
Square Units.
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Question 1

A right triangle has sides of 2" and 5". What is the length of the hypotenuse?

a) ��10 inches 
b) 252 inches 
c) ��29 inches 
d) ��27 inches

Answer: c 

Question 2

What is the length of the hypotenuse of a triangle if the sides are 10 and 20?

a) 5��10 
b) 10���5 
c) ���120  
d) ��10 

Answer: b 

Explanation
10 squared is 100, and 20 squared is 400. The square root of their sum, 500, can be
simplified to 10��5.

Question 3

The length of the longest leg of a right triangle is 10 feet. One of the other legs
measures 3 feet. What is the length of the third leg?

a) can’t tell from this information
b) ��91
c) 13
d) ����109

Answer: b

Explanation
We can conclude that the 10 foot side must be the hypotenuse because it is the
longest side. The hypotenuse is always the longest side in any right triangle
because its square is equal to the sum of the squares of the other sides, which
means each side by itself is smaller than the hypotenuse. Now we can solve the
formula using c = 10 feet and one of the other sides (it doesn’t matter which we
choose) = 3. Substituting we get: 

100 = 9 + (remaining side)2

100 – 9 = (remaining side)2

��91 = length of remaining side
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means each side by itself is smaller than the hypotenuse. Now we can solve the
formula using c = 10 feet and one of the other sides (it doesn’t matter which we
choose) = 3. Substituting we get: 

100 = 9 + (remaining side)2

100 – 9 = (remaining side)2

��91 = length of remaining side
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Many trades, particularly construction, glass cutters, carpet layers, work with the
relationships between the angles and sides of right triangles. Each of the two acute
angles in every right triangle has an opposite side that it opens out towards, and an
adjacent side that is not the hypotenuse.

AB is the side opposite angle BCA, and adjacent to angle ABC. AC is the side
opposite angle ABC, and adjacent to angle BCA.

BC is the hypotenuse.

Locate any angle in a diagram of a right triangle and then you will be able to tell
which side is opposite and which is adjacent to that angle. For any angle in a right
triangle use the following definitions:

Sine of the angle = the opposite side remember S = O/H 
hypotenuse

Cosine of the angle = the adjacent side remember C = A/H
hypotenuse 

Tangent of the angle = the opposite side remember T = O/A
the adjacent side

These ratios can be very helpful when the length of two sides of a right triangle are
given and you want to know the size of the angle between them. A calculator, or
tables, will show the angle that equals the value calculated for any of these ratios. A
trigonometric equation can be solved for each of the three variables. When you
have input values for any two of them, you can find the value of the third.14

B

A C

Hypotenuse

People have memorized the meaning of SOHCAHTOA for more than two
thousand years…

14 Review Math – Module 3, Unit 1 – Understanding Equations for a discussion on rearranging and
solving equations.
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In the following examples we solve for the relationships that express the three
trigonometric ratios. Math level five has an extended unit on trigonometry that
develops these ideas further.

Examples

If we know that the right triangle in the diagram has angle a = 45 degrees, and side
y = 10 feet, we can find the length of side x by using tan a = x/y instead of directly
measuring side x. The tangent of 45° = 1, because x = y in a 90, 45, 45 triangle.

We write this: tan 45 = 1. By substituting the values we know into the formula for
tan a we get: 1 = x/10, and then x = 10.

1. Find the formula for the tangent of angle b

Tangent = opposite/adjacent 

Tan b = y/x

2. Find the sine of angle b

sine = opposite/hypotenuse

sine of b (or sin b) = y/h

3. Find the cosine of angle a

cosine = adjacent/hypotenuse

cos a = y/h (notice that the cosine of a = the sine of b)

4. Find the tangent of angle a

tan a = x/y

5. Find the cosine of angle b

cos b = x/h

6. Find the sine of angle a

sin a = x/h (notice that sin a = cos b)
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7) What is the cosine of angle b?

The cosine is the adjacent divided by the hypotenuse. Angle b has an adjacent
side = 10, and we have to find h by using the Pythagorean relationship:

h2 = 102 + 102

h = ������200

h = 14.14

Now express the cosine of angle b = 10/14.14 = .707.

We also know that angle a = 45° and angle b = 45°.

8) What is the hypotenuse if side a = 12 feet?

Use the Pythagorean formula to set sides a and b equal to 12.

h2 = 122 + 122

h = ������288 = 16.97

Notice that the angles are still 45°, and the sine = cosine = .707.

UNIT 2UNIT 2

b

a
10

10
h

Unit 2 – Measuring Shapes UNIT 2

7070 Math – Module 4 – Measuring Time, Shapes and Spaces

UNIT 2UNIT 2UNIT 2
Topic 3 – Triangles

7) What is the cosine of angle b?

The cosine is the adjacent divided by the hypotenuse. Angle b has an adjacent
side = 10, and we have to find h by using the Pythagorean relationship:

h2 = 102 + 102

h = ������200

h = 14.14

Now express the cosine of angle b = 10/14.14 = .707.

We also know that angle a = 45° and angle b = 45°.

8) What is the hypotenuse if side a = 12 feet?

Use the Pythagorean formula to set sides a and b equal to 12.

h2 = 122 + 122

h = ������288 = 16.97

Notice that the angles are still 45°, and the sine = cosine = .707.

UNIT 2UNIT 2

b

a
10

10
h



A   71   NWT Math Mod 4 

Unit 2 – Measuring Shapes UNIT 2

7171Math – Module 4 – Measuring Time, Shapes and Spaces

UNIT 2UNIT 2UNIT 2
Topic 4 – Circles

Background

A circle is a curved line drawn at a distance from a
fixed point called the centre. You can make a circle
by spinning a compass around a point. There are
360 degrees in a circle. When a line drawn from the
center to the edge of the circle goes around the
circle once it goes through 360 degrees and traces
the distance around the circle which is called the
circumference. A circumference is also a line
around a ball or sphere. The equator traces the
circumference of the earth if we choose to picture
the earth as a perfect sphere.

Any line drawn across the circle through the center is called a diameter. Any line
drawn from the center to the edge of the circle is called a radius. All radius lines
equal each other, and all diameter lines equal each other. A diameter is twice the
length of the radius, and the radius is equal to one half the length of the diameter.

For Greater Clarity:

90 degrees is the size of the right angle CDB formed by the lines that border 1/4 of a
circle’s circumference.15 The 90 degree angle opens out onto 1/4 of the circumference.
Any radius line meeting any diameter line at 90° will form two right triangles when
the point of the radius on the circumference is joined by a line to each end of the
diameter. Each side of the right angle is a radius, or one half diameter of a circle. A
circle can have any line drawn through the center to show the diameter, but all of
these lines will have the same length. The same holds true for a radius. Any line
from the center to the circumference is a radius of the circle.16

UNIT 2UNIT 2

C

BA

AD is a radius DB is a radius
AB is a diameter

The curve from C to B 
is 1/4 of the circumfrence

CD is a radius

D

15 The angles with a vertex at the center of a circle have the radius as legs. Because a radius has a
fixed length, it is a line and does not extend indefinitely like a ray in an angle.

16 "The terms circumference and perimeter can refer either to the total distance around a circle, or to
the edge of a circle at any point on its perimeter or circumference."

Why 360?
Early geometres thought
there were 360 days in
the circle of a year. A
circle can be divided into
any number of units but
360 has stuck.
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Angles and Circles

A circle can be divided into angles between 0 degrees and 360 degrees. In the next
diagram the circle has been divided into 45 degree sections. You may want to use
your protractor to measure the angles that are shown.

Degrees in a circle are counted anti-clockwise starting from the horizontal diameter.
0° = 360° in the journey around a circle.
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For Greater Clarity:

Picture a radius line in the diagram moving from 0 degrees up through 45
degrees = 1/8 of the circumference to 90 degrees = 1/4 of the circumference. As we
continue anti-clockwise, the radius line goes through 90 + 45 degrees = 135
degrees, which is 3/8 of the circumference. We continue through 180 degrees
which is the diameter line on the left of the centre = 1/2 of the circumference. The
circle is completed as we rotate the radius through 225 degrees, 270 degrees,
315 degrees and finally 360 degrees which returns us to the diameter line. The
journey around the circle can be divided into any stopping places we choose.
Each angle will mark off a portion of the circumference and a portion of the
area of the circle.
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Special Topic: How Time Zones are Determined

Time zones were invented to organize the use of clocks around the world for
daily living. For example, it is convenient to measure sunrise in any time zone
between 5 a.m. to 8 a.m. However, as NT residents know, the further away from
the equator one goes in a time zone, the more seasonal changes affect the
amount of daylight, and when the sun rises. The geometry of the circle and the
fact that the earth rotates on its axis once every 24 hours from east to west,
determines how time zones are measured.

The earth is almost a round ball that rotates once each day on its north to
south axis. When viewed from "above" the north pole, and looking "down", the
direction of rotation is anticlockwise, or from east to west. In Canada, the sun
rises first in the maritimes, and then 3 hours later in Yellowknife.

An imaginary line called the equator makes a circle like a belt around the earth
at the point halfway between the north and south poles.

The equator is parallel to lines of latitude that "slice" the earth in equal
divisions from north to south. Time zones are the result of dividing the earth
into 24 equal sized areas that correspond to the amount of circumference that
passes a fixed point on the equator each hour as the earth rotates on its north
to south axis. Lines of longitude are used to mark these divisions.

360 degrees divided by 24 equals 15 degrees of rotation per hour. Each time
zone covers 15 degrees of the earth’s daily rotation. Since we know the distance
around the earth is about 25,000 miles, we can estimate the distance across
each time zone at the equator as 1/24 of 25,000 = 1041.6 miles.

15° = one time zone = 1 hour = 1/24 of C
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Question 1

What is the angle that is formed when 3/4 of a circumference is bounded by the legs
(sides) of an angle? 

a) 90 degrees 
b) 180 degrees 
c) 270 degrees 
d) 310 degrees

Answer: c

Explanation 
Picture a line sweeping out three fourths of a circle and you reach the line
perpendicular to the diameter you started from. This line makes a 270 degree angle
measured from the starting point on the horizontal radius.

��ABC = 270°

Question 2

How many degrees are in a complete circle?

a) 180
b) 360 
c) 270 
d) 90

Answer: b

Explanation 
A circle has been divided into 360 degrees. Another number could be chosen and a
conversion factor used to relate this number to the standard division into 360
degrees. 360 is based on the traditional connection between the approximate
number of days in a year and one complete revolution.
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Question 3

If you travel 1/4 of the way around a circle and draw a line to the centre, how many
degrees will be in the angle between this line and the diameter line you started
from? 

a) 180 degrees
b) 90 degrees
c) 360 degrees
d) 45 degrees

Answer: b

Explanation 
Refer to the diagram used in Question 1 and see that one fourth of a circle is
covered by a 90 degree angle.

Question 4

The circumference of a circle is:

a) greater than the diameter.
b) less than the diameter.
c) equal to the diameter.
d) unrelated to the diameter.

Answer: a

Explanation 
The diameter is a straight angle and corresponds to (ie opens out onto) half of the
circumference. Because the semicircle is curved and joins the same endpoints as
the diameter we can conclude that it will be longer than the diameter, but we don’t
how much longer until we introduce the formula for circumference = x diameter.
You can also reach this conclusion by inspecting the sketch of a circle.
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Background

Each 2 dimensional shape can be a base for a 3D, or three dimensional, right angled
extension: a circle becomes a sphere, cylinder, or cone, a triangle becomes a
pyramid, and a square becomes a cube. In each case, a perpendicular, called the
height or altitude, can be drawn from the top of the solid figure to the base. Each
shape will have a formula for its area and for the volume of the solid that
corresponds to it. The change from a line, to a square, and then to a cube, shows the
changes from a dimension measurement to an area measurement to a volume
measurement.

Here you can see the relationship between length, perimeter, area and volume. The
next diagram shows the way that a circle can become the base for cones, cylinders
and spheres, a rectangle the base for rectangular solids (including cubes when the
sides are equal), and a triangle the base for triangular pyramids.

Unit 3
Measuring Spaces: Lines, Areas, Volumes

Line Square Unit 
of Area

Cubic Unit 
of Volume

Unit square of area
Unit cube of volume
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Here you can see the way that a circle can become the base for cones, cylinders
and spheres, a rectangle the base for rectangular solids (including cubes when the
sides are equal), and a triangle the base for triangular pyramids. Each solid has a
perpendicular from the top (apex) to the base that is called the height or altitude.
The area of the base and the size of the altitude are used as inputs for volume
Formulas. Formulas for the areas and volume of each shape are provided below.
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Triangle
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Circular Base
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Circular Base
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Base

Rectangular Base
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Diameter
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Height
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Rectangular Solid Pyramid

Pyramid
Triangular Base
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The distance around a figure bounded by straight lines is called the perimeter, or
"measurement that surrounds". If you walk around a house and count your paces,
you are measuring the perimeter of the house. The distance around a circle is a
curved line and the length of this curved line measures the circumference, or
distance around the circle. If you count the paces around a circular water tower, you
are measuring the circumference of the circular base of the cylindrical tower. The
solution to perimeter problems with shapes and circles uses the following
definitions: 

Perimeter: the sum of the lengths of the sides of a figure on a flat, or two
dimensional surface. The perimeter of a rectangle is the sum of the lengths of its
sides. The perimeter of a triangle is the sum of the lengths of its sides. The
perimeter of an irregular shape is the sum of its sides. In every case, the perimeter
is the distance traveled by going along the outside of a figure or shape.

Examples

Calculate the perimeter by adding up the lengths of the sides.

The perimeter = 12 + 12 + 12 = 36 

Radius: the distance from the centre of a circle to its circumference. The radius = 1/2

of the diameter, and the diameter = 2 x the radius.

Diameter: the length of a line through the centre of a circle from one side to the
other. The diameter = 2 x the radius, the radius= 1/2 x diameter

Radius = 1, diameter = 2

12 12

12

1

2

= 3.14

The ratio of the circumference
over the diameter of any circle.

 = c
d
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distance around the circle. If you count the paces around a circular water tower, you
are measuring the circumference of the circular base of the cylindrical tower. The
solution to perimeter problems with shapes and circles uses the following
definitions: 

Perimeter: the sum of the lengths of the sides of a figure on a flat, or two
dimensional surface. The perimeter of a rectangle is the sum of the lengths of its
sides. The perimeter of a triangle is the sum of the lengths of its sides. The
perimeter of an irregular shape is the sum of its sides. In every case, the perimeter
is the distance traveled by going along the outside of a figure or shape.

Examples

Calculate the perimeter by adding up the lengths of the sides.

The perimeter = 12 + 12 + 12 = 36 

Radius: the distance from the centre of a circle to its circumference. The radius = 1/2

of the diameter, and the diameter = 2 x the radius.

Diameter: the length of a line through the centre of a circle from one side to the
other. The diameter = 2 x the radius, the radius= 1/2 x diameter

Radius = 1, diameter = 2

12 12

12
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2

= 3.14

The ratio of the circumference
over the diameter of any circle.

 = c
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The diameter (and therefore the radius too) can be found from the relationship
between circumference and π.

The circumference of any circle = π times the diameter. The diameter is the distance
across the centre of the circle from one side to the other. π is a Greek letter that
stands for the number 3.1416… This number is a constant. 3.14… is the answer you
get whenever you divide the distance around a circle by its diameter.17 This
relationship doesn’t change no matter how big or small the circle is. A close
approximation to pi is the fraction 22/7.

Examples

1. What is the circumference of a circle with a diameter of 12 feet?

Use the formula that relates the circumference to the diameter: C = πD

We know π = 3.14, and D = 12 feet

Substituting: 

C = 3.14 x 12 feet = 37.68 feet

2. The radius of a circle is 4 feet. Find the circumference.

Use the same relationship as in #1 and the fact that the radius = 1/2 of the
diameter, therefore the diameter is 2x the radius.

D = 2 x radius = 2 x 4 = 8 feet

C = 3.14 x 8 = 25.12 feet

Circumference: The circumference is the distance around a circle.
The circumference can be found by using this relationship:

Circumference = π times the diameter. C = πD

Diameter = Circumference ÷ π

Radius = 

π = 3.1416…

We always know the value of π. Therefore, if we know the circumference we
can find the diameter, and if we know the diameter we can find the radius, and
vice versa.

17 Pi is an irrational number. Its decimal form neither repeats a pattern, nor ends. It can be rounded to
any desired place value. It continues to be calculated by powerful computers to many thousands of
places. Review Math – Module 1, Unit 1, Topic 4 – Rational Numbers and Signed Numbers.

C
2π

= C ÷ 2π
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C = 3.14 x 12 feet = 37.68 feet
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3. What is the perimeter of this school yard?

This is a composite figure, made of a rectangle joined to a half circle.
To find the perimeter, we add up the lengths of each part of the schoolyard. The
perimeter is the sum of 20' + 30' + 30' + 1/2 of the circumference of a circle with
radius = 8 feet.

1/2 of the circumference = 1/2 D and this equals x the radius when 
we simplify D/2.

Since C = D, 1/2C = 1/2 D

1/2C = r (because d/2 = r)

1/2C = 25.12 feet

The perimeter of the schoolyard = 25.12 + 20 + 30 + 30 = 105.12 feet

30 feet

20 feet 8 feet
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Area is the amount of space covered by a figure. We measure area in square units.
One way to find the area of a two dimensional figure is to place small squares
inside its perimeter. The number of squares it takes to cover the space inside with
no overlapping squares is the area. The simplest example of this process is the
square: 

This is a drawing of a square that measures one inch on a side, and that has an area
of one square inch. The scale in the drawing is 1:1. You can see that sixteen smaller
squares measuring .25 inches on a side will exactly cover the space contained by
the perimeter of this one inch square. This is the area of the one inch square. If we
choose to measure the area in quarter inch squares, the area equals 16 quarter inch
squares. 16 is a total that can be found by multiplying the number of units on one
side by another side. 4 x 4 = 16. Because the sides are equal, the formula for area
becomes s2 = area of a square.

For Greater Clarity: 

16 squares measuring a quarter inch on a side is equal to one square measuring
one inch on a side. A person placing tiles on the floor of a square kitchen would
measure the number of tiles that can fit along one side and then multiply this
number by itself to find the total number of tiles needed to cover the floor.

.25

.25

1" 1 square inch = 
16 x .25 square inches

1" =

In the trades units for area can be chosen for convenience

You can also see that this diagram can be scaled to any size. For example, we
could set one side of the square to 10 feet instead of one inch. In this case, the
area would be 100 square feet. If we wanted to measure the area by dividing
each side into four equal squares, as in the diagram, each square would
measure 10 ÷ 4 = 2.5 feet on a side, and once again 16 of these squares would
be needed to cover the surface. People who install tiles of different sizes use
measuring units that suit their materials. If the tiles measured 2.5 feet on a side,
this would be a convenient unit for calculating area because we would know
how many tiles we need for a job.
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What you need to know about perimeter and area:

1. Perimeter is the distance around a two dimensional shape. These shapes
are also called plane figures because they can be drawn on a flat surface,
or plane. The perimeter of a circle is called the circumference. The
perimeter of a many sided figure is the sum of the lengths of each side, no
matter how many sides there are.

2. A four sided figure is called a quadrilateral. Squares, trapezoids, and
parallelograms are quadrilaterals. A shape with more than four sides is
called a polygon. When the sides are equal in length, the shape is called a
regular polygon.

3. Area is the number of unit squares, that will cover a plane figure. You will
need to know the formulas that give the area for the following plane
figures:

a) Area of four sided figures (quadrilaterals)

1. Area of a square = s2 (multiply a side by itself) 

2. Area of a parallelogram = bh (the product of any base and its
corresponding height, aka altitude. A parallelogram is a quadrilateral
with both pairs of opposite sides parallel. The opposite sides are
also equal.) 

3. Area of a trapezoid = 1/2h(a + b) (one half the product of the altitude
and the sum of the bases. A trapezoid is a quadrilateral with one
pair of parallel sides)

b) Area of a triangle = 1/2 bh (one half of the base times the height)

c) Area of a circle = r2 (pi is a constant 3.14, r = radius)
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Special Topic: Using Area Relationships to Prove That a2 + b2 = c2

in a Right Triangle.

1. Take any right triangle with sides a, b, and c, and construct a square whose
sides have lengths a + b: 

The four triangles in the diagram with right angles at each corner of the
square, are congruent, and each hypotenuse is a side of the smaller square
with side = c. Notice that the area of the contained square = c2, and will be
less than the area of the containing square whose area will equal (a+b)2.
Notice also that the area of each triangle abc = 1/2ab. You can conclude that
(a+b)2 (the area of the outer square) = 4(1/2ab) + c2 because the area of the
four right triangles plus the area of the inner square equals the area of the
larger, outer, square with sides = a + b.

2. Copy the same larger square with sides equal to a + b and shade in the
square areas that equal a2 and b2.

3. Now draw diagonals in the rectangular areas with sides b and a. This
creates four congruent triangles, labelled 1, 2, 3, 4.

4. a2 + b2 = c2 can now be proven by adding up the areas of the four triangles
and combining the result with the areas for the two squares, a2 and b2. This
gives the total area of the square whose sides are a + b in the second
diagram.

We know that the total area in both diagrams is equal; we have simply
expressed two ways of adding it up. This allows us to set the formula for the
total area in the first diagram equal to the formula for the total area in the
second diagram: 

4(1/2ab) + c2 = 4(1/2ab) + a2 + b2

solve for c2 by subtracting 4(1/2ab) from both sides.

c2 = a2 + b2

c
c

c
c

a

b

a

a

b

b

ba

a

a

b

a

b
3

1
2

b2

a2

4

b

a b
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A figure that has surfaces on more than one plane is called a three dimensional
solid. A cube of sugar has squares as sides, but each of the eight sides is on a
different plane. Each pair of opposite sides occupies parallel planes. The world we
live in contains three dimensional solid objects that take up space. Cubes, cylinders,
cones, and pyramids are examples. Measuring the space occupied by something
calculates its volume.

Example

1) What is the volume of this box?

This is a solid object with three edges, or side lengths. The side lengths are not all
equal, so we know it is not a cube. Length, width, and height will be equal to each
other in a cube and we can use s3 to find volume in that case. Here we use Volume
of a rectangular solid = L x W x H.

Volume = 2 feet x 2 feet x 4 feet = 16 cubic feet 

From Area to Volume

Like area, volume is calculated by a similar process of adding up the cubic units
required to fill up the space contained within the boundaries of a three dimensional
object.

The volume of this cube equals 64 cubes measuring one unit on a side. It takes 64
of these unit cubes to fill the space enclosed by the cube measuring four units on a
side. This total can be found by multiplying the length of each of the three
dimensions of the cube. 4 x 4 x 4 = 64. This is the same as s3, if we think of each
edge as a "side".

2 feet

2 feet

4 feet

1
1 1

4

4
4
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What You Need to Know About Area and Volume 

Area measures the number of squares with sides = 1 unit in some measurement
system that will cover a two dimensional plane figure, for example a square,
rectangle, triangle, or circle.

Formulas for the area of a shape use inputs that measure the length, width,
height, thickness, radius, or diameter of a shape.

Examples:

Area of a circle = r2, and r is measured in units of length

Area of a triangle = 1/2bh, and the base and height are measured in units of
length

Volume measures the number of cubes with edges = 1 unit in a measurement
system that will fill the space contained by a three dimensional solid. Volume
can be calculated from area. Formulas for volume use the area of the
corresponding plane figure as an input. Area is a variable in formulas for
volume.

Formulas: 

Volume of a sphere = (Area of a circle)(4r) = 4/3 r3

3

Volume of a cylinder = (Area of circular base)(h) = r2h

Volume pyramid  = 1 (Area of rectangular or square base)(h) = l x w x h
3 3

Volume of a cone = 1 (Area of circular base)(h) = r2h
3 3
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Examples: perimeter, area, and volume 

1. Find the perimeter of this shape.

The perimeter = 5 + 15 + 7 + 6 + 4 + 3 + 5 = 45
This shape is a polygon. The length of the sides can be added in any order to
find the distance around the entire figure.

2. Find the area of this figure:

This is a four sided figure with unequal sides. It is a rectangle.
Area of rectangle = the product of two sides joined at a corner 
(adjacent sides).
Area = 4 x 6 = 24 square feet

3. Find the area of this circle: 

Area of a circle = r2 ( = 3.14, r = length of radius) 
If r = 1 foot, then
Area = 3.14 x 12 = 3.14 square feet

15

7

6

4
3

5

5

6

4

r = 1 foot Radius = distance from
the centre to the
circumference.
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4. Find the area of this figure

Base = 4’, h = 8’
Area of a triangle = 1/2 base x height
Area = 1/2 x 4 x 8 = 16 square feet

5. Find the area of this figure 

Area of a parallelogram = bh 
The height is 6 meters, and one base is given as 10 meters.
6 x 10 = 60 square meters.

6. Find the area of this figure 

Area of a trapezoid = 1/2h(a+b)
The height is 10, and the bases equal 10’ and 15’. Substituting into the formula
we get: 

1/2(10) (10+15) = A

A = 5(25) = 125

125 square feet is the answer.

8'

4'

10 metres

8 metres
6 m 6 m

15'

10'

10'

C D

BA
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7. Find the area of this dump yard: 

This is a two step problem because the area is the sum of a rectangle and a
semicircle.

The area of the rectangle = L x W = 90 x 120 = 10,800 yards 

The area of the semicircle is one half the area of the circle with diameter of 90
yards. Notice that the diameter is equal to the width of the yard, so the radius
will be 45 yards.

Area of half circle = 

The total area = 3,179.25 + 10,800 = 13,979.25 square yards.

8. What is the volume of a cone if the area of the base is 10 square meters, and the
height is 12 meters?

Use the formula for volume of a cone = :

Since we are given the area of the circular base for an input into the formula, we
solve A x h = 10m2 (ten square meters) x 12 meters to get 120m3, or 120 cubic
meters of volume, which gives 40 m3 by completing the formula and dividing
120 m3 by 3. Notice that the product of meters and meters squared is meters
cubed, or m3.

9. If the volume of a cylinder is 120 cubic liters, and the cylinder is 1 meter long,
what is the area of the base?

Volume of a cylinder = Area of circular base x h= r2h

In this problem we are given the volume, and the height, and have to rearrange
the formula to solve for area of the base.

Area of base = volume ÷ height

Area of base = 120 cubic meters ÷ 1 metre= 120m2, or 120 square metres. Notice
that m3 ÷ m = m2.

90 yards

120 yards

1
2

3.14
2

(452) = 3,179.25 square yardsr2 =

1
3

r2h
3

(Area of circular base)(h) =
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7. Find the area of this dump yard: 

This is a two step problem because the area is the sum of a rectangle and a
semicircle.

The area of the rectangle = L x W = 90 x 120 = 10,800 yards 

The area of the semicircle is one half the area of the circle with diameter of 90
yards. Notice that the diameter is equal to the width of the yard, so the radius
will be 45 yards.

Area of half circle = 

The total area = 3,179.25 + 10,800 = 13,979.25 square yards.

8. What is the volume of a cone if the area of the base is 10 square meters, and the
height is 12 meters?

Use the formula for volume of a cone = :

Since we are given the area of the circular base for an input into the formula, we
solve A x h = 10m2 (ten square meters) x 12 meters to get 120m3, or 120 cubic
meters of volume, which gives 40 m3 by completing the formula and dividing
120 m3 by 3. Notice that the product of meters and meters squared is meters
cubed, or m3.

9. If the volume of a cylinder is 120 cubic liters, and the cylinder is 1 meter long,
what is the area of the base?

Volume of a cylinder = Area of circular base x h= r2h

In this problem we are given the volume, and the height, and have to rearrange
the formula to solve for area of the base.

Area of base = volume ÷ height

Area of base = 120 cubic meters ÷ 1 metre= 120m2, or 120 square metres. Notice
that m3 ÷ m = m2.

90 yards

120 yards

1
2

3.14
2

(452) = 3,179.25 square yardsr2 =

1
3

r2h
3

(Area of circular base)(h) =
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10. Find the volume of this pyramid:

This is a pyramid on a square base. To find volume we use the area of the base
as an input to the volume formula. The area of the base is 64 square feet.

Volume pyramid = 1/3(Area of rectangular or square base) x h = l x w x h
3

Volume = 1/3(64)(12) = 256 cubic feet

11. A carpenter wants to calculate how much plywood he needs to cover all
surfaces of a cubic storage box that measures 4 feet by 4 feet by 4 feet. How
many square feet of plywood will he need?

This problem describes a cube with edge = 4. We can find the area of one
surface and then multiply by the number of surfaces that have to be covered.
The area of one surface = 4 x 4 = 16 square feet. There are 3 pairs of parallel
surfaces in a cube, or 6 surfaces. Count the surfaces on a die to prove this to
yourself. The answer will be 6 x 16 = 96 square feet.

12. What is the total surface area of this shape, including the base:

We have to add the area for each surface in a rectangle and in a pyramid that is
placed on top of it. The problem can be done in steps:

h=12'

8'
8'

4"

4"

4"
4"

6"
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10. Find the volume of this pyramid:

This is a pyramid on a square base. To find volume we use the area of the base
as an input to the volume formula. The area of the base is 64 square feet.

Volume pyramid = 1/3(Area of rectangular or square base) x h = l x w x h
3

Volume = 1/3(64)(12) = 256 cubic feet

11. A carpenter wants to calculate how much plywood he needs to cover all
surfaces of a cubic storage box that measures 4 feet by 4 feet by 4 feet. How
many square feet of plywood will he need?

This problem describes a cube with edge = 4. We can find the area of one
surface and then multiply by the number of surfaces that have to be covered.
The area of one surface = 4 x 4 = 16 square feet. There are 3 pairs of parallel
surfaces in a cube, or 6 surfaces. Count the surfaces on a die to prove this to
yourself. The answer will be 6 x 16 = 96 square feet.

12. What is the total surface area of this shape, including the base:

We have to add the area for each surface in a rectangle and in a pyramid that is
placed on top of it. The problem can be done in steps:

h=12'

8'
8'

4"

4"

4"
4"

6"
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1. Area of four sides of rectangle with sides = 4 x 4 x 6 = 4x 24 = 96 square
inches.

2. Area of base = 4 x 4 = 16

3. Area of four surfaces of pyramid = 4 x triangular area on each surface
= 4 x 1/2bh = 4 x 1/2(4)(4) = 32 square inches

4. Add the contributions to total surface area from steps 1 - 3:
96 + 16 + 32 = 144 square inches

13. An arctic airport control tower is being built with a complete climate control
system. The engineer wants to know the total volume of air that will circulate in
the structure. Use the information on this diagram to calculate the total volume.

We have to add the volume of the sphere to the volume of the supporting

cylinder to answer this question. We need these formulas:

Volume of a sphere = (Area of a circle) x 4/3r = 4/3 r3

Volume of a cylinder = (Area of circular base) x h = r2h

1. Volume of sphere = 4/3(3.14)(10)3 = 4/3(3140) = 4186.66 cubic feet

2. Volume of cylinder = (3.146)(6)2(20) = 2260.8 cubic feet

3. Add the contributions of each to get the total volume = 6447.46 cubic feet.

6'

20'

10'
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1. Area of four sides of rectangle with sides = 4 x 4 x 6 = 4x 24 = 96 square
inches.

2. Area of base = 4 x 4 = 16

3. Area of four surfaces of pyramid = 4 x triangular area on each surface
= 4 x 1/2bh = 4 x 1/2(4)(4) = 32 square inches

4. Add the contributions to total surface area from steps 1 - 3:
96 + 16 + 32 = 144 square inches

13. An arctic airport control tower is being built with a complete climate control
system. The engineer wants to know the total volume of air that will circulate in
the structure. Use the information on this diagram to calculate the total volume.

We have to add the volume of the sphere to the volume of the supporting

cylinder to answer this question. We need these formulas:

Volume of a sphere = (Area of a circle) x 4/3r = 4/3 r3

Volume of a cylinder = (Area of circular base) x h = r2h

1. Volume of sphere = 4/3(3.14)(10)3 = 4/3(3140) = 4186.66 cubic feet

2. Volume of cylinder = (3.146)(6)2(20) = 2260.8 cubic feet

3. Add the contributions of each to get the total volume = 6447.46 cubic feet.

6'

20'

10'



A   92   NWT Math Mod 4 

Unit 3 – Measuring Spaces UNIT 3

9292 Math – Module 4 – Measuring Time, Shapes and Spaces

Topic 3 – Practice Exam Questions

Question 1

Jim wants to cut a carpet to cover a circular floor. The width of the room is 13 feet.
How many square feet of carpeting will he need?

a) 1300 
b) 132.665
c) 109.33
d) 91.5

Answer: b

Explanation
We need to find the area (square footage) of the circular floor. We know the area of
any circle = r2

Since the room has a diameter of 13 feet, the radius is 13/2 = 6.5 feet.

Now we use our formula for area:

A = (6.5)2

A = (3.14)(6.5)(6.5) = 132.665 square feet

Question 2

What is the area of a triangle with a base of 12 feet and a height of 15 feet? 

a) 110 square feet
b) 27 square feet
c) 159 square feet
d) 90 square feet

Answer: d

Explanation
A = 1/2bh

A = 1/2 x 12 x 15 = 90 square feet
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a) 1300 
b) 132.665
c) 109.33
d) 91.5

Answer: b

Explanation
We need to find the area (square footage) of the circular floor. We know the area of
any circle = r2

Since the room has a diameter of 13 feet, the radius is 13/2 = 6.5 feet.

Now we use our formula for area:

A = (6.5)2

A = (3.14)(6.5)(6.5) = 132.665 square feet

Question 2

What is the area of a triangle with a base of 12 feet and a height of 15 feet? 

a) 110 square feet
b) 27 square feet
c) 159 square feet
d) 90 square feet

Answer: d

Explanation
A = 1/2bh

A = 1/2 x 12 x 15 = 90 square feet
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Question 3

A town pays $1.05 for each 100 cubic feet of water. How much will the town pay to
fill the civic pool if the pool measures 12 feet x 20 feet x 8 feet? 

a) $20.16
b) $11.05
c) $110.50
d) $15.05

Answer: a 

Explanation
The volume expressed in cubic feet will allow us to calculate the cost of the water.

Volume = L x H x W the width can also be understood as the depth of the pool.
There are three dimensions and we multiply them to get: 

V = 12 x 20 x 8 = 1920 cubic feet

Now divide by 100 cubic feet to see how much the town will pay.

1920/100 = 19.2 The town will pay 19.2 x $1.05 cents = $20.16

Question 4

What is the area of the front of Frank’s house if it has the following measurements: 

a) 168 feet
b) 96 square feet
c) 224 square feet
d) 328 square feet

Answer: c

8 feet

10 feet

16 feet
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Question 3

A town pays $1.05 for each 100 cubic feet of water. How much will the town pay to
fill the civic pool if the pool measures 12 feet x 20 feet x 8 feet? 

a) $20.16
b) $11.05
c) $110.50
d) $15.05

Answer: a 

Explanation
The volume expressed in cubic feet will allow us to calculate the cost of the water.

Volume = L x H x W the width can also be understood as the depth of the pool.
There are three dimensions and we multiply them to get: 

V = 12 x 20 x 8 = 1920 cubic feet

Now divide by 100 cubic feet to see how much the town will pay.

1920/100 = 19.2 The town will pay 19.2 x $1.05 cents = $20.16

Question 4

What is the area of the front of Frank’s house if it has the following measurements: 

a) 168 feet
b) 96 square feet
c) 224 square feet
d) 328 square feet

Answer: c

8 feet

10 feet

16 feet
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Explanation
Rectangle = 16’x 10’

Triangle base = 16’, h = 8’

The area is the sum of the area of a rectangle and a triangle. Calculate the area of
the rectangle = 16’x10’ = 160 square feet

The area of the triangle = 1/2 x 16’ x 8’ = 64 square feet

The combined areas = 224 square feet 

Question 5

A rectangular tank holds 1872 cubic feet of sludge. The sides measure 12’ by 13’.
How deep is the tank?

a) 32 feet
b) 16 feet
c) 12 feet
d) 15 feet

Answer: c

Explanation
We can find out without lowering a tape measure or climbing in. We know that the
volume, 1872 cubic feet = 12’ x 13’ x depth. Let D = the depth

1872 cubic feet = 12 feet x 13 feet x D feet

To find the depth we divide both sides by the product of 12 x 13 = 156

Depth = 1872/156 = 12 feet.
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Explanation
Rectangle = 16’x 10’

Triangle base = 16’, h = 8’

The area is the sum of the area of a rectangle and a triangle. Calculate the area of
the rectangle = 16’x10’ = 160 square feet

The area of the triangle = 1/2 x 16’ x 8’ = 64 square feet

The combined areas = 224 square feet 

Question 5

A rectangular tank holds 1872 cubic feet of sludge. The sides measure 12’ by 13’.
How deep is the tank?

a) 32 feet
b) 16 feet
c) 12 feet
d) 15 feet

Answer: c

Explanation
We can find out without lowering a tape measure or climbing in. We know that the
volume, 1872 cubic feet = 12’ x 13’ x depth. Let D = the depth

1872 cubic feet = 12 feet x 13 feet x D feet

To find the depth we divide both sides by the product of 12 x 13 = 156

Depth = 1872/156 = 12 feet.
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Topic 1 — Problems Involving Linear Estimation of Raw
Materials for a Job 
Estimates for a job involve rounding up so as not be short of materials for the job.
Estimation of linear quantities requires that we know the relationship between the
length needed for a job, and a material’s measurement. For example, how many
pieces of 12 foot moulding will it take to do a door frame? Problems like this are
really conversion problems using an exchange factor. Review the section on
converting from units to subunits, Unit 1, Topic 2 – Units and Subunits.

Sample Problems 

1. How many bricks will be needed to line one side of a walkway if the walkway is
10 feet long and one brick measures 8 inches?

We need to know the length of the walkway in inches, or the length of the brick
in feet before we can find the relationship between the two lengths. If we go
from "big to small", we convert 10’ into 10’x12 = 120".

We can now divide 120" by the length of 1 brick to see how many bricks are
required to equal 10 feet.

120" ÷ 8" = 15

We are in luck, we need exactly 15 bricks to line each side of the walkway.

2. A floor measures 12’ along one wall. We will put a stud every 16.5". How many
studs will we need for this wall?

We need to divide 12’ by 16.5" Convert 12’ into inches. 12 x 12 = 144 inches. 144" ÷
16.5" = 8.72

Unit 4
Measurement and Estimation Problems

Tip:

The units (inches, feet, metres, etc.) in the numerator and denominator of the
division problem cancel out to give a "scalar" answer – the number of pieces is
a quantity, not a dimension of something.
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Topic 1 — Problems Involving Linear Estimation of Raw
Materials for a Job 

We cannot use part of a stud, so we can either use 8 studs or 9 studs. 8.72 is
closer to 9 than to 8, so we will estimate 9 studs for this wall.

3. How many bolts will we need to put a bolt every 6 inches through an I beam
that measures 32 feet?

We divide 32’ by 6" to find how many bolts are needed. Here it is easier to
convert inches to feet. We can convert 6" to 1/2 foot and divide into 32 feet.

32 ÷ 1/2 = 64

We will need 64 bolts in order to place one every 6" on a 32’ beam.

4. A house needs 30’ of 110 wire for each room. There are 11 rooms in the house.
Estimate the wire needed for the house.

Multiply the number of rooms times the amount of wire needed in each to get
the total required.

11 x 30’ = 330 feet of wire

5. Amy wants to put metal roofing on her cabin. Each sheet will cover 2.5 feet of
the length of the roof. The roof is 16 feet long. How many sheets will she need
to cover the edge on one side?

We divide 16 feet by 2.5 feet to see how many sheets are needed.

16’ ÷ 2.5’ = 6.4 sheets. We will estimate 7 sheets and expect to cut one to fit.
6 would leave us short, therefore we round up the next number of sheets.
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Topic 1 — Problems Involving Linear Estimation of Raw
Materials for a Job 

We cannot use part of a stud, so we can either use 8 studs or 9 studs. 8.72 is
closer to 9 than to 8, so we will estimate 9 studs for this wall.

3. How many bolts will we need to put a bolt every 6 inches through an I beam
that measures 32 feet?

We divide 32’ by 6" to find how many bolts are needed. Here it is easier to
convert inches to feet. We can convert 6" to 1/2 foot and divide into 32 feet.

32 ÷ 1/2 = 64

We will need 64 bolts in order to place one every 6" on a 32’ beam.

4. A house needs 30’ of 110 wire for each room. There are 11 rooms in the house.
Estimate the wire needed for the house.

Multiply the number of rooms times the amount of wire needed in each to get
the total required.

11 x 30’ = 330 feet of wire

5. Amy wants to put metal roofing on her cabin. Each sheet will cover 2.5 feet of
the length of the roof. The roof is 16 feet long. How many sheets will she need
to cover the edge on one side?

We divide 16 feet by 2.5 feet to see how many sheets are needed.

16’ ÷ 2.5’ = 6.4 sheets. We will estimate 7 sheets and expect to cut one to fit.
6 would leave us short, therefore we round up the next number of sheets.
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Topic 2 – Problems Involving Estimation of Raw
Materials for a Job Area
Review:

Area is expressed in square units. The area of a floor tile that measures 1 foot on
each side is 1’x1’ = 1 square foot. The area of a tile measuring 2’ by 1’ is 2 square
feet. A square metre is the area covered by a tile that measures 1 metre on a side. A
rectangle and a square have the same formula for area. Multiply one side times the
other side.

Think of coverage when you think of area. Remember to round up when estimating
materials so that you have enough to finish the job. Every area problem involves
square units, and converting from units to subunits and vice versa. Review the
section on converting units.

Sample Problems

1. A floor measures 12’ by 14’. How much carpet material will be required for a wall
to wall carpet?

We need to know the area of the floor. The floor is a rectangle. Multiply 12’ x 14’
= 168 square feet. Since the carpet is wall to wall, we will need 168 square feet
of material.

2. Amy wants to roof her cabin with metal sheets. Each sheet is 2.5’ wide by 8 feet
long. Her roof measures 16’ by 20’ on each side. How many sheets will she need
for the job? 

We can calculate the total area of the roof and then compare this with the area
of one sheet.

The total area is 2 x 16’ x 20’ = 640 square feet (because the roof has two sides)

Each sheet has an area = 2.5’ x 8’ = 20 square feet. We divide 640 square feet by
20 square feet to see how many sheets are needed. 640 square feet ÷ 20 square
feet = 32 sheets. (the units, square feet, cancel out)

Review Tip:

Units of area (square inches, square feet, square metres, etc.) in the numerator
and denominator of a division problem may cancel out to give a "scalar"
answer – a number of pieces or times is a quantity, not a dimension of
something

Example: 10 square feet ÷ 2 square feet = 5, not five square feet or five feet.
5 means "five times" when units "cancel out".
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Topic 2 – Problems Involving Estimation of Raw
Materials for a Job Area
Review:

Area is expressed in square units. The area of a floor tile that measures 1 foot on
each side is 1’x1’ = 1 square foot. The area of a tile measuring 2’ by 1’ is 2 square
feet. A square metre is the area covered by a tile that measures 1 metre on a side. A
rectangle and a square have the same formula for area. Multiply one side times the
other side.

Think of coverage when you think of area. Remember to round up when estimating
materials so that you have enough to finish the job. Every area problem involves
square units, and converting from units to subunits and vice versa. Review the
section on converting units.

Sample Problems

1. A floor measures 12’ by 14’. How much carpet material will be required for a wall
to wall carpet?

We need to know the area of the floor. The floor is a rectangle. Multiply 12’ x 14’
= 168 square feet. Since the carpet is wall to wall, we will need 168 square feet
of material.

2. Amy wants to roof her cabin with metal sheets. Each sheet is 2.5’ wide by 8 feet
long. Her roof measures 16’ by 20’ on each side. How many sheets will she need
for the job? 

We can calculate the total area of the roof and then compare this with the area
of one sheet.

The total area is 2 x 16’ x 20’ = 640 square feet (because the roof has two sides)

Each sheet has an area = 2.5’ x 8’ = 20 square feet. We divide 640 square feet by
20 square feet to see how many sheets are needed. 640 square feet ÷ 20 square
feet = 32 sheets. (the units, square feet, cancel out)

Review Tip:

Units of area (square inches, square feet, square metres, etc.) in the numerator
and denominator of a division problem may cancel out to give a "scalar"
answer – a number of pieces or times is a quantity, not a dimension of
something

Example: 10 square feet ÷ 2 square feet = 5, not five square feet or five feet.
5 means "five times" when units "cancel out".
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Topic 2 – Problems Involving Estimation of Raw
Materials for a Job Area
3. Bill wants to paint his house. Each side of the house is 150 square metres in

area. The paint can says that 1 litre will cover 4 square metres of surface area.

How many litres will he need for his job?

Divide the total area to be painted by the area 1 litre will cover.
150 square feet ÷ 4 square feet = 37.5 litres. In order not to be short,
Bill orders 38 litres of paint.

4. The Aklavik golf tournament requires astro turf to cover the course. The golf

course measures 250 metres by 500 metres. What is the area of astro turf
required?

The area of the course is the product of the lengths of the sides.
250 metres x 500 metres = 125,000 square metres.

5. The pool cover at the Ruth Inch Memorial Pool is a perfect square and has an

area of 400 square feet. The edges of the cover need to be replaced with new

material. How much material will be needed to re-edge the entire cover? 

We need to know the length of one side of the cover. Because we know the area

of the cover, and that the cover is a square, we can take the square root of the
area to learn the length of the side

������400  square feet = 20 feet

The cover has four sides, so we will need 4 x 20’ = 80 feet of edging material.
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Topic 2 – Problems Involving Estimation of Raw
Materials for a Job Area
3. Bill wants to paint his house. Each side of the house is 150 square metres in

area. The paint can says that 1 litre will cover 4 square metres of surface area.

How many litres will he need for his job?

Divide the total area to be painted by the area 1 litre will cover.
150 square feet ÷ 4 square feet = 37.5 litres. In order not to be short,
Bill orders 38 litres of paint.

4. The Aklavik golf tournament requires astro turf to cover the course. The golf

course measures 250 metres by 500 metres. What is the area of astro turf
required?

The area of the course is the product of the lengths of the sides.
250 metres x 500 metres = 125,000 square metres.

5. The pool cover at the Ruth Inch Memorial Pool is a perfect square and has an

area of 400 square feet. The edges of the cover need to be replaced with new

material. How much material will be needed to re-edge the entire cover? 

We need to know the length of one side of the cover. Because we know the area

of the cover, and that the cover is a square, we can take the square root of the
area to learn the length of the side

������400  square feet = 20 feet

The cover has four sides, so we will need 4 x 20’ = 80 feet of edging material.
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Topic 3 – Problems Involving Estimate of Raw
Materials for a Job Volume
Review:

Volume is expressed in cubic units. A cubic unit is an output of a volume formula. A
cube is a special case of a rectangular solid because each of its three edges are
equal. The volume of a cube is the edge times itself three times. Length, width (or
depth), and height are equal to each other in a cube. The volume of a cube = e3

(where e = the length of an edge). The cube root of the volume of a cube is the
length of its edge.

A cubic unit can be expressed in any system of measurement. A cubic foot
describes a cube measuring one foot on each of its three edges, a cubic metre
describes a cube measuring one metre on each of its three edges. A cubic metre = 1
metre x 1 metre x 1 metre. A cubic foot = 1 foot x 1 foot x 1 foot. Cubic feet must be
divided by cubic feet, cubic metres by cubic metres and so on.

Be sure to convert all measurements into the same units before calculating volume,
and express your answer in cubic units.

Sample Problems

1. A concrete foundation requires a slab measuring 16 feet by 12 feet and 
6 inches thick. How much concrete will be needed?

We need to know the number of cubic feet that will be poured into a form like
this. First change all of the units into feet. 6" = .5’. The volume of the slab = 16’ x
12’ x .5’ = 96 cubic feet.

2. Water must be trucked into a community once a week to fill a tank that
measures 12’ by 8’ by 6’. How may cubic feet of water must be trucked in?

The volume of the tank = 12’ x 8’ x 6’ = 576 cubic feet.

3. The insulation required for a house consists of fiberglass batts measuring 2’ by
3’ by 1’. What will be the volume of fiberglass in a wall measuring 12’ x 16’ x 1’
thick? How many batts will be needed?

The volume of the wall = 12’ x 16’ x 1’ = 192 cubic feet. One batt has a volume of
2’ x 3’ x 1’ = 6 cubic feet. Divide 6 cubic feet into 192 cubic feet to see how many
batts are needed = 32 batts.

4. A landfill is being dug that will measure 1000 feet x 2000 feet x 20 feet. What is
the volume of earth that will be hauled away?

The volume of the earth being removed equals the volume of the hole being
dug. Volume = 1000’ x 2000’ x 20’ = 40,000,000 or 4.0 x 107 cubic feet. This
number could be simplified by dividing it by the number of cubic feet in one
cubic yard.
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Topic 3 – Problems Involving Estimate of Raw
Materials for a Job Volume
Review:

Volume is expressed in cubic units. A cubic unit is an output of a volume formula. A
cube is a special case of a rectangular solid because each of its three edges are
equal. The volume of a cube is the edge times itself three times. Length, width (or
depth), and height are equal to each other in a cube. The volume of a cube = e3

(where e = the length of an edge). The cube root of the volume of a cube is the
length of its edge.

A cubic unit can be expressed in any system of measurement. A cubic foot
describes a cube measuring one foot on each of its three edges, a cubic metre
describes a cube measuring one metre on each of its three edges. A cubic metre = 1
metre x 1 metre x 1 metre. A cubic foot = 1 foot x 1 foot x 1 foot. Cubic feet must be
divided by cubic feet, cubic metres by cubic metres and so on.

Be sure to convert all measurements into the same units before calculating volume,
and express your answer in cubic units.

Sample Problems

1. A concrete foundation requires a slab measuring 16 feet by 12 feet and 
6 inches thick. How much concrete will be needed?

We need to know the number of cubic feet that will be poured into a form like
this. First change all of the units into feet. 6" = .5’. The volume of the slab = 16’ x
12’ x .5’ = 96 cubic feet.

2. Water must be trucked into a community once a week to fill a tank that
measures 12’ by 8’ by 6’. How may cubic feet of water must be trucked in?

The volume of the tank = 12’ x 8’ x 6’ = 576 cubic feet.

3. The insulation required for a house consists of fiberglass batts measuring 2’ by
3’ by 1’. What will be the volume of fiberglass in a wall measuring 12’ x 16’ x 1’
thick? How many batts will be needed?

The volume of the wall = 12’ x 16’ x 1’ = 192 cubic feet. One batt has a volume of
2’ x 3’ x 1’ = 6 cubic feet. Divide 6 cubic feet into 192 cubic feet to see how many
batts are needed = 32 batts.

4. A landfill is being dug that will measure 1000 feet x 2000 feet x 20 feet. What is
the volume of earth that will be hauled away?

The volume of the earth being removed equals the volume of the hole being
dug. Volume = 1000’ x 2000’ x 20’ = 40,000,000 or 4.0 x 107 cubic feet. This
number could be simplified by dividing it by the number of cubic feet in one
cubic yard.
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UNIT 4

100100 Math – Module 4 – Measuring Time, Shapes and Spaces

Topic 3 – Problems Involving Estimate of Raw
Materials for a Job Volume

5. A truck can carry 2000 cubic feet of milled lumber. A beam is milled near Fort
Simpson that measures 6 inches x 10 inches x 20 feet. How many of these
beams could the truck carry?

We need the volume in cubic feet of one beam in order to divide into the total
of 2000 cubic feet that the truck can carry. Change the dimensions into feet and
multiply.

Volume of one beam in cubic feet = .5’ x .83’ x 20’ = 8.3 cubic feet.

2000 cubic feet ÷ 8.3 cubic feet = 241 pieces (rounded to nearest whole piece) 

Tip:

The units "cubic feet" in the numerator and denominator ‘cancel out’ to give a
"scalar" answer – the number of pieces is a quantity, not a dimension of
something.
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Topic 3 – Problems Involving Estimate of Raw
Materials for a Job Volume

5. A truck can carry 2000 cubic feet of milled lumber. A beam is milled near Fort
Simpson that measures 6 inches x 10 inches x 20 feet. How many of these
beams could the truck carry?

We need the volume in cubic feet of one beam in order to divide into the total
of 2000 cubic feet that the truck can carry. Change the dimensions into feet and
multiply.

Volume of one beam in cubic feet = .5’ x .83’ x 20’ = 8.3 cubic feet.

2000 cubic feet ÷ 8.3 cubic feet = 241 pieces (rounded to nearest whole piece) 

Tip:

The units "cubic feet" in the numerator and denominator ‘cancel out’ to give a
"scalar" answer – the number of pieces is a quantity, not a dimension of
something.
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UNIT 4

101101Math – Module 4 – Measuring Time, Shapes and Spaces

Topic 4 – Problems Involving Spacing and Dimensions

Spacing refers to how often something is installed, placed, located, or moved.
Dimensions refer to the measurement of quantities that affect spacing, for example
length, height, width, surface area.

Sample Problems

1. The GNWT is opening a new office building in Yellowknife. It will be 12 stories
tall and each story will be 10 feet tall. Each side of the building will be 66 feet
long. Two thirds of the way up from the base of each story there will be row of
windows. Calculate the following:

a) Two 6 foot wide openings for doors will be at street level on the west side.
Where will the centre of each opening be placed if they are equally distant
from each other and from the corners?

Two points on a line that are equally distant from each other and from the
corners will divide the line into thirds. Draw a line to see that this is so.
66’ ÷ 3 = 22’

The centre of each door will be 22 feet from the corners, and 22 feet from
each other.

b) Each story will have a row of windows on each side. Each window is 2 feet
6 inches wide. How much space should be between the windows and the
windows and corners in order to evenly space 10 windows per side? 

Think of the side as a line. Draw ten windows on the line approximately an
equal distance apart. You will see that we want to divide the line into eleven
equal spaces. You might think ten spacings will do, but if you make a
drawing, the two spaces required between the end windows and the
corners make 11 intervals (spaces) necessary.

66’ ÷ 11= 6’. The midpoints of the windows will be 6’ apart from each other and
from the corners. You can check this answer by multiplying 6’ by 11= 66’. These
points would be the midpoints for ten windows of any width on a 66’ line. The
fact that each one is 2’6" allows a builder to mark the edges for framing each
window at 1’3" from the centre of each window.

1 2 3 4 5 6

66'

7 8 9 10
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Topic 4 – Problems Involving Spacing and Dimensions

Spacing refers to how often something is installed, placed, located, or moved.
Dimensions refer to the measurement of quantities that affect spacing, for example
length, height, width, surface area.
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windows and corners in order to evenly space 10 windows per side? 

Think of the side as a line. Draw ten windows on the line approximately an
equal distance apart. You will see that we want to divide the line into eleven
equal spaces. You might think ten spacings will do, but if you make a
drawing, the two spaces required between the end windows and the
corners make 11 intervals (spaces) necessary.

66’ ÷ 11= 6’. The midpoints of the windows will be 6’ apart from each other and
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1 2 3 4 5 6

66'

7 8 9 10
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102102 Math – Module 4 – Measuring Time, Shapes and Spaces

Topic 4 – Problems Involving Spacing and Dimensions

2. A carpenter is nailing boards onto a stud wall for sheathing. The wall is 8’ high
and 16’ long. He has thirteen 1" x 6" x 16’ pieces to use up before starting on a
pile of 1" x 8" x 16’ pieces. How many 1" x 8" x 16’ pieces will he need to finish
the job?

This problem can be solved by looking at the area that the thirteen 1" x 6"
pieces will cover and subtracting this from the total area. The remaining area
will then be covered by the 1" x 8" pieces.

First calculate the total area to be covered: 8’ x 16’ = 128 square feet.

Calculate the area that thirteen 1" x 6" x 16’ will cover. Convert to feet and
multiply: 

.5’ x16’ = 8 square feet x 13 pieces = 104 square feet

Now calculate the remaining area to cover = total area minus the part covered
by the 13 pieces of 1" x 6". 128 square feet – 104 square feet = 24 square feet.

Calculate what one piece of 1" x 8" x 16 feet will cover. Convert to feet and
multiply. 8" = .75 foot. .75’ x 16’ = 12 square feet. Two pieces will cover 24 square
feet.

We will need two pieces of 1" x 8" x 16’ to finish the job.

3. A carpenter wants to put up a wall with a 2" x 4" stud every 16.5". The wall is 13
feet long. If he starts on one end of the floor and marks where to put a stud
every 16.5", how many studs will fit, and what will be the space remaining
between the last stud and the corner? 

This is a layout problem on a ruled line. We divide 13’ by 16.5 inches to find the
number of studs that will fit. First convert feet to inches.

13’ = 13 x 12" = 156". Now divide: 16.5" into 156" = 9.45 times. This means we can
space 9 studs 16.5" inches apart with some space left over. .45 of 16.5" will be
left over. .45 x 16.5" = 7.425" inches will be left between the last stud and the
corner.
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Topic 4 – Problems Involving Spacing and Dimensions

2. A carpenter is nailing boards onto a stud wall for sheathing. The wall is 8’ high
and 16’ long. He has thirteen 1" x 6" x 16’ pieces to use up before starting on a
pile of 1" x 8" x 16’ pieces. How many 1" x 8" x 16’ pieces will he need to finish
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3. A carpenter wants to put up a wall with a 2" x 4" stud every 16.5". The wall is 13
feet long. If he starts on one end of the floor and marks where to put a stud
every 16.5", how many studs will fit, and what will be the space remaining
between the last stud and the corner? 

This is a layout problem on a ruled line. We divide 13’ by 16.5 inches to find the
number of studs that will fit. First convert feet to inches.

13’ = 13 x 12" = 156". Now divide: 16.5" into 156" = 9.45 times. This means we can
space 9 studs 16.5" inches apart with some space left over. .45 of 16.5" will be
left over. .45 x 16.5" = 7.425" inches will be left between the last stud and the
corner.
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103103Math – Module 4 – Measuring Time, Shapes and Spaces

Topic 5 — Problems Involving the Addition, Subtraction,
Multiplication and Division of Time (hrs and min)
Review the section on converting units to subunits and subunits to units.
The exchange factors for time include 1 day = 24 hours, 1 hour = 60 minutes,
60 seconds = 1 hour.

Sample Problems

1. Bill worked 31/2 hours, Jane worked 7 hours and 20 minutes, Brian worked 13
hours and 10 minutes. How many hours were worked by all three people?

This is an addition problem that requires hours to be added to hours and
minutes or parts of an hour to be added to each other. First add the hours: 
3 + 7 + 13 = 23 hours. Now add the remaining time: 1/2 hour + 20 minutes + 
10 minutes. We can’t add 1/2 an hour to minutes, so we change 1/2 hour to the
number of subunits, minutes, it equals. 1/2 hour = 30 minutes.

Now add all of the minutes: 20 + 10 + 30 = 60 minutes = 1 hour

Our final answer is 23 hours + 1 hour = 24 hours = 1 day.

2. The sun will set in 3 hours and 45 minutes. It is now 11 p.m. What time will the
sun set? 

We need to add 3 hours and 45 minutes to 11:00 pm. 11 pm + 3 = 2:00 a.m.
Adding 45 more minutes gives 2:45 a.m. The sun will set at 2:45 am. It is
probably July in Yellowknife.

3. Bill is willing to work the last 3 hours of my shift. If my 8 hour shift starts at 4
pm, when will Bill show up to replace me? 

The shift is 8 hours and Bill will work the last three. That means 8 – 3 = 5 hours
that I will work before he comes to relieve me. Since I start at 4 pm, I will work
4:00 + 5 hours before he comes. This means he will come at 9:00 pm, after I
work five hours.

4. Terry worked 3.5 hours per day for 8 days in a row. How many hours did he
work 
in all?

Multiply 3.5 x 8 = 28 hours in total

5. How many minutes are in 69.2 hours?

We know there are 60 minutes in one hour, so 69.2 x 60 = the number of
minutes in 69.2 hours = 4152 minutes.

6. How many hours are in 7198 minutes?

We know there are 60 minutes in one hour. Divide the number of minutes by 60
to get the number of hours. 7198 ÷ 60 = 119.97 hours.

.97 of one hour = .97 x 60 minutes = 58.2 minutes. The complete answer is 119
hours and 58.2 minutes.
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Topic 5 — Problems Involving the Addition, Subtraction,
Multiplication and Division of Time (hrs and min)
Review the section on converting units to subunits and subunits to units.
The exchange factors for time include 1 day = 24 hours, 1 hour = 60 minutes,
60 seconds = 1 hour.

Sample Problems

1. Bill worked 31/2 hours, Jane worked 7 hours and 20 minutes, Brian worked 13
hours and 10 minutes. How many hours were worked by all three people?

This is an addition problem that requires hours to be added to hours and
minutes or parts of an hour to be added to each other. First add the hours: 
3 + 7 + 13 = 23 hours. Now add the remaining time: 1/2 hour + 20 minutes + 
10 minutes. We can’t add 1/2 an hour to minutes, so we change 1/2 hour to the
number of subunits, minutes, it equals. 1/2 hour = 30 minutes.

Now add all of the minutes: 20 + 10 + 30 = 60 minutes = 1 hour

Our final answer is 23 hours + 1 hour = 24 hours = 1 day.

2. The sun will set in 3 hours and 45 minutes. It is now 11 p.m. What time will the
sun set? 

We need to add 3 hours and 45 minutes to 11:00 pm. 11 pm + 3 = 2:00 a.m.
Adding 45 more minutes gives 2:45 a.m. The sun will set at 2:45 am. It is
probably July in Yellowknife.

3. Bill is willing to work the last 3 hours of my shift. If my 8 hour shift starts at 4
pm, when will Bill show up to replace me? 

The shift is 8 hours and Bill will work the last three. That means 8 – 3 = 5 hours
that I will work before he comes to relieve me. Since I start at 4 pm, I will work
4:00 + 5 hours before he comes. This means he will come at 9:00 pm, after I
work five hours.

4. Terry worked 3.5 hours per day for 8 days in a row. How many hours did he
work 
in all?

Multiply 3.5 x 8 = 28 hours in total

5. How many minutes are in 69.2 hours?

We know there are 60 minutes in one hour, so 69.2 x 60 = the number of
minutes in 69.2 hours = 4152 minutes.

6. How many hours are in 7198 minutes?

We know there are 60 minutes in one hour. Divide the number of minutes by 60
to get the number of hours. 7198 ÷ 60 = 119.97 hours.

.97 of one hour = .97 x 60 minutes = 58.2 minutes. The complete answer is 119
hours and 58.2 minutes.
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Topic 5 — Problems Involving the Addition, Subtraction,
Multiplication and Division of Time (hrs and min)
7. Five people want to share a computer that is available for 5.5 hours. How much

time can each person have?

We need to divide the available time by the number of people. 5.5 ÷ 5 = 1.1
hours, 0.1 hours x 60 minutes = 6 minutes, each gets 1 hour 6 minutes.

8. It took Bill 4 hours and 20 minutes to get from Rae Edzo to Yellowknife in bad
weather in his Jeep. Jim took 2 hours and 10 minutes in his Ford on the same
day. How much shorter was the trip for Jim than for Bill?

We need to know the difference in the travel times. Subtract the shorter trip Jim
had from the longer one that Bill had.

4 hours 20 minutes – 2 hours 10 minutes = 2 hours 10 minutes. It took Bill twice
as long to make the same trip that Jim made. Or put the other way, Jim got
there twice as fast as Bill did.

9. It takes Clara 4 hours to sew the uppers on a pair of dress mukluks. She has 12
pairs to do. How long will she need?

This is a multiplication problem. Multiply the time per mukluk (the unit time)
times the number of mukluks (the number of units). 4 x 12 = 48 hours. Clara will
need 48 hours or two days to get the job done.

10. The ice gets thicker by 1 mm for every 10 minutes that goes by at –30 degrees
celsius. How thick will the ice be in 1 hour and 30 minutes?

We need to know how many ten minute periods are in 1 hour and 30 minutes.
This number times 1 mm will give the total increase in thickness after 1 hour
and 30 minutes.

Divide 1 hour and 30 minutes by 10. First convert hours to minutes.

1 hour and 30 minutes = 90 minutes

90 minutes divided by 10 = 9

There are 9 periods of 10 minutes each, so the ice will thicken 
1 mm x 9 = 9 mm at the end of 1 hour and 30 minutes.

Unit 4 – Measurement and Estimation Problems UNIT 4

104104 Math – Module 4 – Measuring Time, Shapes and Spaces

Topic 5 — Problems Involving the Addition, Subtraction,
Multiplication and Division of Time (hrs and min)
7. Five people want to share a computer that is available for 5.5 hours. How much
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We need to divide the available time by the number of people. 5.5 ÷ 5 = 1.1
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had from the longer one that Bill had.

4 hours 20 minutes – 2 hours 10 minutes = 2 hours 10 minutes. It took Bill twice
as long to make the same trip that Jim made. Or put the other way, Jim got
there twice as fast as Bill did.

9. It takes Clara 4 hours to sew the uppers on a pair of dress mukluks. She has 12
pairs to do. How long will she need?

This is a multiplication problem. Multiply the time per mukluk (the unit time)
times the number of mukluks (the number of units). 4 x 12 = 48 hours. Clara will
need 48 hours or two days to get the job done.

10. The ice gets thicker by 1 mm for every 10 minutes that goes by at –30 degrees
celsius. How thick will the ice be in 1 hour and 30 minutes?

We need to know how many ten minute periods are in 1 hour and 30 minutes.
This number times 1 mm will give the total increase in thickness after 1 hour
and 30 minutes.

Divide 1 hour and 30 minutes by 10. First convert hours to minutes.

1 hour and 30 minutes = 90 minutes

90 minutes divided by 10 = 9

There are 9 periods of 10 minutes each, so the ice will thicken 
1 mm x 9 = 9 mm at the end of 1 hour and 30 minutes.
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105

There are four modules in the common core required for all trades entrance math
exams. Each module has a set of practice exam questions with an answer key. Each
topic in the table of contents has sample questions to test your preparation for the
trades entrance exam.

You should aim for 100%, and study the sections of the curriculum for any topics
that you do not get right. After each answer the units and topics you should review
are identified. Turn to the appropriate part of the curriculum whenever you need
help.

The core math curriculum is based on "need to know" competencies that are
important in all trades. You may want to use the following sample exam questions
both as a way of assessing what you need to learn before you work on the
curriculum, and as a test of what you know after you have completed your
preparation for the exam.

Answer Key 

The following questions are grouped in clusters of related items. You may want to
randomly pick questions from different parts of the test for pre-test purposes, or
you may want to home in on a particular area by using the answer key. Use the
answer key to see which topics go with each question. For example, questions 1-5
are concerned with Unit 1 (measurement), Unit 3, Topic 1 (perimeter), and Unit 4,
Topic 1 (problems with linear estimations for a job). Question 65 deals with Unit 2,
Topic 3.A – Similar and Congruent Triangles. If you want to take a pre-test, select
every fourth question, score yourself, and you will get an idea of what to study.
After studying, try every third question and see how well you do and repeat the
study cycle based on your results.
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Unit 5 – Practice Exam Questions UNIT 5

Please feel free to refer to page 24 of this module for a table of
formulas and conversions.

Question 1

How many posts will be needed for one side of a field that is 1/2 mile long if a post is
put in every 8 feet? 

a) 500
b) 330
c) 1100
d) 264

Question 2

How many 8" bricks are needed to do a job across a window sill that is 4’6" wide?

a) 8
b) 10
c) 7
d) 9

Question 3

A spool of wire is 8760 feet long. Each wiring job requires 2330 feet. How many jobs
will the spool do?

a) 2
b) 3
c) 4
d) 5

Question 4

A roof takes 600 nails. Each box of nails has 250 nails in it. How many boxes should
you bring for the job?

a) 1
b) 2
c) 3
d) 4

Question 5

How many studs are needed for a wall that is 22 feet long if they are placed every
16.5 inches?

a) 12
b) 14
c) 15
d) 16
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Unit 5 – Practice Exam Questions UNIT 5

Question 6

How many square metres of carpeting will be needed to cover a room that
measures 6 metres by 8 metres?

a) 48 square feet 
b) 86 square metres
c) 4.0 square metres
d) 48 square metres

Question 7

How many 4’ by 8’ sheets of plywood are required to cover a shed roof measuring
10’ by 12’?

a) 32
b) 5
c) 4
d) 3

Question 8

The ski club wants to paint their cabin. The walls add up to 2300 square feet of
surface area. One gallon of paint covers 200 square feet. How many gallons will the
club need?

a) 10
b) 11
c) 12
d) 13

Question 9

The pool committee wants to order a pool cover. The pool is 32 metres by 12
metres. How many square metres will be needed for the cover?

a) 2.54
b) 600
c) 384
d) 684

Question 10

A kitchen tile measures 4" by 3". A countertop measures 8 feet by 2 feet. How many
tiles are needed to cover the countertop?

a) 109 
b) 192 
c) 96 
d) 196
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a) 2.54
b) 600
c) 384
d) 684

Question 10

A kitchen tile measures 4" by 3". A countertop measures 8 feet by 2 feet. How many
tiles are needed to cover the countertop?

a) 109 
b) 192 
c) 96 
d) 196
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Question 11

How much concrete is needed for a pour into a wall form measuring 
10 feet x 25 feet x 8 inches?

a) 250 cubic feet 
b) 8025 cubic inches 
c) 167 cubic feet 
d) 2000 cubic feet

Question 12

How much water will come out of a pool measuring 14’ x 12’ x 6’?

a) 10,000 gallons 
b) 192 cubic feet 
c) 90 cubic yards 
d) 1008 cubic feet

Question 13

How much insulation will be available from 20 batts of fiberglass each measuring
2’ x 3’ x 6"?

a) 40 cubic feet 
b) 36 cubic feet 
c) 60 cubic feet 
d) 600 cubic feet

Question 14

Will a pit measuring 8’ by 20’ by 15’ be filled by 2890 cubic feet of earth?

a) yes 
b) no 
c) almost 
d) can’t tell from this information

Question 15

A cement job requires 890,000 cubic feet of cement mix. How many cubic yards
should the cement company truck in for the job?

a) 5,000 
b) 50,000 
c) 26,090 
d) 32,963
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Question 16

One sheet of drywall measures 4’ by 8’. How many sheets will be needed to cover a
wall that measures 8’ by 58’?

a) 16 
b) 16.5 
c) 14 
d) 14.5

Question 17

A 3’ wide door is being placed in the middle of a 14 foot wall. How far is the centre
of the door from each end of the wall?

a) 6.5 feet 
b) 7.5 feet 
c) 7 feet 
d) 4.5 feet

Question 18

How many studs will be needed to for a wall measuring 23 feet if they are placed
on centre every 16.5 inches?

a) 17 
b) 16.5 
c) 15 
d) 12

Question 19

How many pieces of 1" x 4" x 8’ siding will be needed to cover a wall measuring 
8’ x 8’?

a) 32 
b) 30 
c) 24 
d) 20

Question 20

It took 10 boards of 1" x 8" x 10’ nailed horizontally to cover a wall. How high is the
wall?

a) 15”
b) 80”
c) 25”
d) 20”
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Question 21

What is 1/3 of 16 feet? 

a) 41/3 feet 
b) 31/3 feet 
c) 51/3 feet 
d) 4 inches

Question 22

Multiply 3’2" by 6

a) 192.2 inches 
b) 19 feet 
c) 19 inches 
d) 19.9 inches

Question 23

Divide 112 feet into 4 equal lengths. How long will each length be?

a) 44 feet 
b) 144 inches 
c) 28 feet and 4 inches 
d) 28 feet

Question 24

Add 5’6", 7’2", and 6’11"

a) 12’6" 
b) 17’8" 
c) 19’4" 
d) 19’7"

Question 25

Subtract 5’4" from 11’ 3"

a) 5’11" 
b) 11’5" 
c) 7’1" 
d) 11’7"
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Question 26

How many seconds are in 4 hours?

a) 1,400 
b) 4,000 
c) 144,000 
d) 14,400

Question 27

Convert 23 feet 3 inches to inches

a) 96 inches 
b) 911.5 inches 
c) 279 inches 
d) 20 feet 39 inches

Question 28

What is the dollar value of 5500 pennies?

a) $155.00 
b) $550.00 
c) $55.55 
d) $55.00

Question 29

How many miles are in 58,080 feet?

a) 12 
b) 13 
c) 11
d) 10

Question 30

How many ounces are in 52 lbs. 7 ounces?

a) 839 
b) 527 
c) 5839 
d) 939

Question 31

How many metres are in 55 yards?

a) 55.292 
b) 110 
c) 46.47 
d) 50.29
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Question 32

Change 13 gallons into an equivalent number of litres.

a) 39 
b) 69.2 
c) 59.1
d) 79.1

Question 33

How many kilometres are in 560 miles?

a) 1,001.23 
b) 1,560 
c) 915.63 
d) 901.04

Question 34

How many pounds are equal to 43 kilograms?

a) 220.15 
b) 115.2 
c) 230.2 
d) 86

Question 35

How many litres are in 33 gallons?

a) 112.1
b) 150.2 
c) 124.9 
d) 132.2
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Question 36

The point labelled A measures:

a) 5 cm 
b) 5.2 cm 
c) 50 mm 
d) 5 dm

Question 37

The point labelled B is closest to:

a) 1 dm 
b) 10 mm 
c) 10 cm 
d) .7 cm

Question 38

The point labelled C equals:

a) 73 mm 
b) 7 cm 
c) 8.3 cm 
d) 75 mm

Question 39

What does the point labelled D measure?

a) 11 cm 
b) 111 mm 
c) 11 dm 
d) .5 dm

Question 40

What does the point labelled E measure?

a) 7.8 cm 
b) 7 cm and 5 mm 
c) 5 cm and 7 mm,
d) none of the above
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Question 41

What is the area of a gymnasium floor that measures 14 yards by 12 yards?

a) 368 square feet 
b) 168 square yards 
c) 144.12 square yards 
d) 177 square feet

Question 42

Calculate the depth of a holding tank that measures 13’ x 12’ on top and that has a
volume of 1248 cubic feet.

a) can’t tell from this information 
b) 10 feet 
c) 8 feet 
d) 1248 cubic feet

Question 43

The radius of a circle is 12’. What is the area of the circle?

a) 144 square feet 
b) 12
c) 576 square feet 
d) 452.16 square feet

Question 44

A triangle has a height of 10 feet and a base of 3 feet. What is the area of the
triangle?

a) 300 square inches 
b) 30 square feet 
c) 180 square inches 
d) 15 square feet

Question 45

The area of a triangle is 32 square metres. The base is 8 metres.
What is the height?

a) 6 metres 
b) 12 metres 
c) 8 metres 
d) 16 centimetres

Unit 5 – Practice Exam Questions UNIT 5

114 Math – Module 4 – Measuring Time, Shapes and Spaces

Question 41

What is the area of a gymnasium floor that measures 14 yards by 12 yards?

a) 368 square feet 
b) 168 square yards 
c) 144.12 square yards 
d) 177 square feet

Question 42

Calculate the depth of a holding tank that measures 13’ x 12’ on top and that has a
volume of 1248 cubic feet.

a) can’t tell from this information 
b) 10 feet 
c) 8 feet 
d) 1248 cubic feet

Question 43

The radius of a circle is 12’. What is the area of the circle?

a) 144 square feet 
b) 12
c) 576 square feet 
d) 452.16 square feet

Question 44

A triangle has a height of 10 feet and a base of 3 feet. What is the area of the
triangle?

a) 300 square inches 
b) 30 square feet 
c) 180 square inches 
d) 15 square feet

Question 45

The area of a triangle is 32 square metres. The base is 8 metres.
What is the height?

a) 6 metres 
b) 12 metres 
c) 8 metres 
d) 16 centimetres

Unit 5 – Practice Exam Questions UNIT 5



A   115   NWT Math Mod 4 

115Math – Module 4 – Measuring Time, Shapes and Spaces

Question 46

In a right triangle, the sine of angle a =

a) side adjacent to a/hypotenuse 
b) the adjacent side/hypotenuse 
c) the hypotenuse/the adjacent side 
d) the side opposite/hypotenuse 

Question 47

In a right triangle, the tangent of a =

a) side adjacent/hypotenuse 
b) the hypotenuse/adjacent side 
c) the opposite side/the adjacent side 
d) the side opposite/hypotenuse 

Question 48

What is the tangent of angle b?

a) h/y 
b) x/y 
c) y/x 
d) x/h

Question 49

The cosine of angle a is equal to:

a) h/y 
b) y/h 
c) x/y 
d) y/x

Question 50

If X = 6 and Y = 10, what is the tangent of angle a?

a) 1.4 
b) .6 
c) 6.0 
d) .16
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Question 51

A circle has a radius of 5’. What is the circumference?

a) 10’
b) 15.14’
c) 31.4’
d) 25’

Question 52

What is the perimeter of this figure

a) 12’
b) 16’
c) 24" 
d) 18’

Question 53

The circumference of a circle is 32 metres. What is the radius?

a) 16.6 metres 
b) 5.09 metres 
c) 64.09 metres 
d) 8.09 metres

Question 54

The diameter of a circle is 3 when the circumference is:

a) 1.5 
b) 9 
c) 3.14 
d) 9.42
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Question 55

How big should the diameter be to get a circular room that has a circumference of
35 feet?

a) 70 feet 
b) 11.14 feet 
c) 12.33 feet 
d) Can’t tell from this information

Question 56

In a right triangle, a2 = 144, and b2 = 144, what is c?

a) 12 ����2
b) 12 
c) �����28
d) �����14

Question 57

What part of the circumference is bounded by an angle of 135 degrees?

a) 2/3 
b) 4/5 
c) 3/4
d) 3/8 

Question 58

What angle is made with the horizontal diameter when a radius line is drawn at
4/5th of the circumference?

a) 1,500 degrees
b) 2,500 degrees
c) 288 degrees
d) 330 degrees

Question 59

The sum of two angles of triangle ABC = 75 degrees. What is the size of the third
angle in the triangle?

a) 175 degrees
b) 90 degrees
c) 105 degrees 
d) 115 degrees
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Question 60

Angle A in triangle ABC = 30 degrees. If we want to design ABC to have one of the
remaining angles be twice the size of the other one, what will the two angles each
equal?

a) 25 degrees, 50 degrees 
b) 75 degrees, 75 degrees
c) 75 degrees, 150 degrees 
d) 50 degrees, 100 degrees

Question 61

If angle A = 45 degrees, and angle B = 60 degrees, find angle C in triangle ABC.

a) 90 degrees 
b) 85 degrees 
c) 75 degrees 
d) 60 degrees

Question 62

What has to be done to the triangle on the left to make it overlay the triangle on the
right?

a) slide
b) flip
c) rotate
d) exchange places
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Question 63

What is the volume of this figure?

a) 3.14
b) 10

3
c) 100
d) 10

Question 64

Which angles are the same size?

a) a and d
b) c and d
c) a and c
d) none are equal

Question 65

Similar triangles have

a) equal angles and equal sides
b) equal angles and proportional sides
c) proportional angles and equal sides
d) identical sides

Question 66

What is the area of a triangle with a base of 10 inches and a height of 12 inches?

a) 22 square inches
b) 11 square inches
c) 60 square inches
d) 34 square inches
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Unit 5 – Practice Exam Questions 

Answers Study Topics

1) b Unit 3, Topic 1 and Unit 4, Topic 1

2) c Unit 3, Topic 1 and Unit 4, Topic 1

3) b Unit 3, Topic 1 and Unit 4, Topic 1

4) c Unit 3, Topic 1 and Unit 4, Topic 1

5) d Unit 3, Topic 1 and Unit 4, Topic 1

6) d Unit 3, Topic 2 and Unit 4, Topic 2

7) c Unit 3, Topic 2 and Unit 4, Topic 2

8) c Unit 3, Topic 2 and Unit 4, Topic 2

9) c Unit 3, Topic 2 and Unit 4, Topic 2

10) b Unit 3, Topic 2 and Unit 4, Topic 2

11) c Unit 3, Topic 3 and Unit 4, Topic 3

12) d Unit 3, Topic 2 and Unit 4, Topic 2

13) c Unit 3, Topic 2 and Unit 4, Topic 2

14) a Unit 3, Topic 2 and Unit 4, Topic 2

15) d Unit 3, Topic 2 and Unit 4, Topic 2

16) d Unit 3, Topic 3 and Unit 4, Topic 3

17) c Unit 3, Topic 1 and Unit 4, Topic 4

18) a Unit 3, Topic 1 and Unit 4, Topic 4

19) c Unit 3, Topic 1 and Unit 4, Topic 4

20) b Unit 3, Topic 1 and Unit 4, Topic 4

21) c Unit 1, Topics 1 to 4

22) b Unit 1, Topics 1 to 3

23) d Unit 1, Topics 1 to 3

24) d Unit 1, Topics 1 to 3

25) a Unit 1, Topics 1 to 3

26) d Unit 1, Topic 2 and Unit 4, Topic 5

27) c Unit 1, Topics 2 and 3

28) d Unit 1, Topic 2

29) c Unit 1, Topic 2
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Unit 5 – Practice Exam Questions 

Answers Study Topics

1) b Unit 3, Topic 1 and Unit 4, Topic 1

2) c Unit 3, Topic 1 and Unit 4, Topic 1

3) b Unit 3, Topic 1 and Unit 4, Topic 1

4) c Unit 3, Topic 1 and Unit 4, Topic 1

5) d Unit 3, Topic 1 and Unit 4, Topic 1

6) d Unit 3, Topic 2 and Unit 4, Topic 2

7) c Unit 3, Topic 2 and Unit 4, Topic 2

8) c Unit 3, Topic 2 and Unit 4, Topic 2

9) c Unit 3, Topic 2 and Unit 4, Topic 2

10) b Unit 3, Topic 2 and Unit 4, Topic 2

11) c Unit 3, Topic 3 and Unit 4, Topic 3

12) d Unit 3, Topic 2 and Unit 4, Topic 2

13) c Unit 3, Topic 2 and Unit 4, Topic 2

14) a Unit 3, Topic 2 and Unit 4, Topic 2

15) d Unit 3, Topic 2 and Unit 4, Topic 2

16) d Unit 3, Topic 3 and Unit 4, Topic 3

17) c Unit 3, Topic 1 and Unit 4, Topic 4

18) a Unit 3, Topic 1 and Unit 4, Topic 4

19) c Unit 3, Topic 1 and Unit 4, Topic 4

20) b Unit 3, Topic 1 and Unit 4, Topic 4

21) c Unit 1, Topics 1 to 4

22) b Unit 1, Topics 1 to 3

23) d Unit 1, Topics 1 to 3

24) d Unit 1, Topics 1 to 3

25) a Unit 1, Topics 1 to 3

26) d Unit 1, Topic 2 and Unit 4, Topic 5

27) c Unit 1, Topics 2 and 3

28) d Unit 1, Topic 2

29) c Unit 1, Topic 2



A   121   NWT Math Mod 4 

121Math – Module 4 – Measuring Time, Shapes and Spaces

Unit 5 – Practice Exam Questions 

Answers Study Topics

30) a Unit 1, Topics 2 and 3

31) d Unit 1, Topics 2 and 3

32) c Unit 1, Topics 2 and 3

33) d Unit 1, Topics 2 and 3

34) b Unit 1, Topics 2 and 3

35) b Unit 1, Topics 2 and 3

36) b Unit 1, Topic 4

37) b Unit 1, Topic 4

38) c Unit 1, Topic 4

39) d Unit 1, Topic 4

40) b Unit 1, Topic 4

41) b Unit 3, Topic 2 and Unit 4, Topic 2

42) c Unit 3, Topic 3 and Unit 4, Topic 3

43) d Unit 2, Topic 4 and Unit 4, Topic 2

44) d Unit 2, Topic 3 and Unit 4, Topic 2

45) c Unit 2, Topic 3 and Unit 4, Topic 2

46) d Unit 2, Topic 3.C

47) c Unit 2, Topic 3.B

48) c Unit 2, Topics 2.A, 2.B and 2.C

49) b Unit 2, Topic 3.C

50) b Unit 2, Topic 3.C

51) c Unit 2, Topic 4 and Unit 3, Topic 1

52) b Unit 3, Topic 1

53) b Unit 2, Topic 4 and Unit 3, Topic 1

54) d Unit 2, Topic 4 and Unit 3, Topic 1

55) b Unit 2, Topic 4 and Unit 3, Topic 1

56) a Unit 2, Topic 3.C

57) d Unit 2, Topic 4 and Unit 3, Topic 1

58) c Unit 2, Topic 4 and Unit 3, Topic 1
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Unit 5 – Practice Exam Questions 

Answers Study Topics

30) a Unit 1, Topics 2 and 3

31) d Unit 1, Topics 2 and 3

32) c Unit 1, Topics 2 and 3

33) d Unit 1, Topics 2 and 3

34) b Unit 1, Topics 2 and 3

35) b Unit 1, Topics 2 and 3

36) b Unit 1, Topic 4

37) b Unit 1, Topic 4

38) c Unit 1, Topic 4

39) d Unit 1, Topic 4

40) b Unit 1, Topic 4

41) b Unit 3, Topic 2 and Unit 4, Topic 2

42) c Unit 3, Topic 3 and Unit 4, Topic 3

43) d Unit 2, Topic 4 and Unit 4, Topic 2

44) d Unit 2, Topic 3 and Unit 4, Topic 2

45) c Unit 2, Topic 3 and Unit 4, Topic 2

46) d Unit 2, Topic 3.C

47) c Unit 2, Topic 3.B

48) c Unit 2, Topics 2.A, 2.B and 2.C

49) b Unit 2, Topic 3.C

50) b Unit 2, Topic 3.C

51) c Unit 2, Topic 4 and Unit 3, Topic 1

52) b Unit 3, Topic 1

53) b Unit 2, Topic 4 and Unit 3, Topic 1

54) d Unit 2, Topic 4 and Unit 3, Topic 1

55) b Unit 2, Topic 4 and Unit 3, Topic 1

56) a Unit 2, Topic 3.C

57) d Unit 2, Topic 4 and Unit 3, Topic 1

58) c Unit 2, Topic 4 and Unit 3, Topic 1
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Unit 5 – Practice Exam Questions 

Answers Study Topics

59) c Unit 2, Topic 3

60) d Unit 2, Topic 3

61) c Unit 2, Topic 3.A

62) b Unit 2, Topic 3.A

63) b Unit 3, Topic 3 and Unit 4, Topic 3

64) b Unit 2, Topic 1

65) b Unit 2, Topic 3.A

66) c Unit 2, Topic 3 and Unit 3, Topic 2
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Unit 5 – Practice Exam Questions 

Answers Study Topics

59) c Unit 2, Topic 3

60) d Unit 2, Topic 3

61) c Unit 2, Topic 3.A

62) b Unit 2, Topic 3.A

63) b Unit 3, Topic 3 and Unit 4, Topic 3

64) b Unit 2, Topic 1

65) b Unit 2, Topic 3.A

66) c Unit 2, Topic 3 and Unit 3, Topic 2
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Appendix A

The following topics from the Alberta Entrance Level Competencies are covered in
Math – Module 4 – Measuring Time, Shapes and Spaces of this curriculum.

SECTION SIX – MEASUREMENT OF SHAPE AND SPACE

A. Properties Of Circles, Angles And Time Zones

Outcome: Solve problems involving the properties of circles and their
connections with angles and time zones. (1, 2, 3, 4, 5)

1. Measure the diameters, radii and circumferences of circles, and establish the
relationships among them.

2. Solve problems involving the radii, diameters and circumferences of circles.

3. Explain how time zones are determined.

4. Research and report how measurement instruments are used in the
community.

B. Metric And Imperial Measure

Outcome: Solve problems involving Metric and Imperial measure. (1, 2, 3, 4, 5)

1. Identify commonly used metric units of measurement.

2. Convert between units of measurement.

3. Convert imperial units:

a. Feet to inches and vice versa.

b. Square inches to square feet and vice versa.

c. Cubic inches to cubic feet and vice versa.

d. Cubic measures to gallons.
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C. Indirect Measurement Procedures

Outcome: Apply indirect measurement procedures to solve problems.
(1, 2, 3, 4, 5)

1. Use concrete materials and diagrams to develop the Pythagorean
relationship.

2. Use the Pythagorean relationship to calculate the measure of the third side
of a right triangle, given the other two sides in 2-D applications.

D. Area, Perimeter, Surface Area And Volume

Outcome: Generalize measurement patterns and procedures, and solve
problems involving area, perimeter, surface area and volume. (1,2,3,4,5)

1. Describe patterns, and generalize the relationships by determining the areas
and perimeters of quadrilaterals and the areas and circumferences of circles.

2. Estimate, measure and calculate the surface area and volume of any right
prism or cylinder.

3. Estimate and calculate the area of composite figures.

4. Estimate, measure and calculate the surface area of composite 3-D objects.

5. Estimate, measure and calculate the volume of composite 3-D objects.

E. Trigonometric Ratios

Outcome: Use trigonometric ratios to solve problems involving a right triangle.
(1, 2, 3, 4, 5)

1. Explain the meaning of sine, cosine and tangent ratios in right triangles.

2. Demonstrate the use of trigonometric ratios (sine, cosine and tangent) in
solving right triangles.

3. Calculate an unknown side or an unknown angle in a right triangle, using
appropriate technology.

4. Model and then solve given problem situations involving only one right
triangle.

F. Problem Solving Involving Dimension Changes In Two And Three Dimensional
Objects

Outcome: Describe the effects of dimension changes in related 2-D shapes and
3-D objects in solving problems involving area, perimeter, surface area and
volume. (1, 2, 3, 4, 5)

1. Relate expressions for volumes of pyramids to volumes of prisms, and
volumes of cones to volumes of cylinders.

2. Calculate and apply the rate of volume to surface area to solve design
problems in three dimensions.

3. Calculate and apply the rate of area to perimeter to solve design problems
in two dimensions.
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SECTION SEVEN – 3-D OBJECTS AND 2-D SHAPES

A. Angle Measures And Properties Of Parallel Lines

Outcome: Link angle measures to the properties of parallel lines. (1, 2, 3, 4, 5)

1. Measure and classify pairs of angles as complementary or supplementary
angles.

2. Investigate, identify and name pairs of angles pertaining to parallel lines
and transversals, including: corresponding, vertically opposite, interior on
the same side of the transversal, and exterior on the same side of the
transversal.

3. Describe the relationships between the pairs of angles pertaining to parallel
lines and transversals.

4. Explain, in more than one way, why the sum of the measures of the angles
of a triangle is 180 degrees.

5. Use mathematical reasoning to determine the measures of angles in a
diagram.

6. Construct angle bisectors and perpendicular bisectors.

B. Angle Measures, Properties of Parallel Lines and Properties of Quadrilaterals

Outcome: Link angle measures and the properties of parallel lines to the
classification and properties of quadrilaterals. (1, 2, 3, 4, 5)

1. Identify, investigate and classify quadrilaterals, regular polygons and circles,
according to their properties.

2. Build 3-D objects from a variety of representations (nets, skeletons).

C. Similar And Congruent Triangles

Outcome: Specify conditions under which triangles may be similar or
congruent, and use these conditions to solve problems. (1, 2, 3, 4, 5)

1. Recognize when, and explain why, two triangles are similar, and use the
properties of similar triangles to solve problems.

2. Recognize when, and explain why, two triangles are congruent, and use the
properties of congruent triangles to solve problems.

3. Relate congruence to similarity in the context of triangles.

D. Describe And Analyze Geometric Shapes

Outcome: Use spatial problem solving in building, describing and analyzing
geometric shapes. (1, 2, 3, 4, 5)

1. Draw the plan and elevations of a 3-D object from sketches and models.

2. Sketch or build a 3-D object, given its plan and elevation views.

3. Recognize and draw the locus of points in solving practical problems.
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SECTION EIGHT – TRANSFORMATIONS

A. Create And Analyse Patterns And Designs

Outcome: Create and analyze patterns and designs, using congruence,
symmetry, translation, rotation and reflection. (1, 2, 3, 4, 5)

1. Create, analyze and describe designs, using translations (slides), rotations
(turns) and reflections (flips).

2. Use informal concepts of congruence to describe images after translations,
rotations and reflections.

3. Draw designs, using ordered pairs, in all four quadrants of the coordinate
grid, together with translation and reflection images.

4. Relate reflections to lines and planes of symmetry.

B. Architectural Patterns

Outcome: Create and analyze design problems and architectural patterns, using
the properties of scaling, proportion and networks. (1, 2, 3, 4, 5)

1. Represent, analyze and describe enlargements and reductions.

2. Draw and interpret scale diagrams and colouring problems.

3. Describe, analyze and solve network problems.

C. Geometry And Pattern Recognition

Outcome: Apply coordinate geometry and pattern recognition to predict the
effects of translations, rotations, reflections and dilatations on 1-D lines and 
2-D shapes. (1, 2, 3, 4, 5)

1. Draw the image of a 2-D shape as a result of a single transformation,
dilatation, combinations of translations, and/or reflections.

2. Identify the single transformation that connects a shape with its image.

3. Demonstrate that a triangle and its dilatation image are similar.

4. Demonstrate the congruence of a triangle with its translation image,
rotation image, and reflection image.

Appendix A

128 Math – Module 4 – Measuring Time, Shapes and Spaces

SECTION EIGHT – TRANSFORMATIONS

A. Create And Analyse Patterns And Designs

Outcome: Create and analyze patterns and designs, using congruence,
symmetry, translation, rotation and reflection. (1, 2, 3, 4, 5)

1. Create, analyze and describe designs, using translations (slides), rotations
(turns) and reflections (flips).

2. Use informal concepts of congruence to describe images after translations,
rotations and reflections.

3. Draw designs, using ordered pairs, in all four quadrants of the coordinate
grid, together with translation and reflection images.

4. Relate reflections to lines and planes of symmetry.

B. Architectural Patterns

Outcome: Create and analyze design problems and architectural patterns, using
the properties of scaling, proportion and networks. (1, 2, 3, 4, 5)

1. Represent, analyze and describe enlargements and reductions.

2. Draw and interpret scale diagrams and colouring problems.

3. Describe, analyze and solve network problems.

C. Geometry And Pattern Recognition

Outcome: Apply coordinate geometry and pattern recognition to predict the
effects of translations, rotations, reflections and dilatations on 1-D lines and 
2-D shapes. (1, 2, 3, 4, 5)

1. Draw the image of a 2-D shape as a result of a single transformation,
dilatation, combinations of translations, and/or reflections.

2. Identify the single transformation that connects a shape with its image.

3. Demonstrate that a triangle and its dilatation image are similar.

4. Demonstrate the congruence of a triangle with its translation image,
rotation image, and reflection image.

Appendix A




	Math Mod 4 cover rev
	math4
	Math  1 Back



